
On Interconnection and Equivalence of

Continuous and Discrete Systems

A Behavioral Perspective

Dutch Institute of Systems and Control

Compositional Analysis and Specification of Hybrid Systems

c© A. A. Julius, Enschede 2005.

The research described in this thesis was undertaken at the Department
of Applied Mathematics, in the Faculty EWI, Universiteit Twente, En-
schede. The funding of the research was provided by the NWO Grant
through project number 617.023.002 (Compositional Analysis and Spec-
ification of Hybrid Systems).

No part of this work may be reproduced by print, photocopy or any
other means without the permission in writing from the author.

Printed by Wöhrmann Printing Service, Zutphen, The Netherlands.
The summary in Dutch was done by Stefan Strubbe and Jan Willem Pol-
derman.

ISBN: 90-365-2145-9

ON INTERCONNECTION AND EQUIVALENCE OF
CONTINUOUS AND DISCRETE SYSTEMS: A

BEHAVIORAL PERSPECTIVE

DISSERTATION

to obtain
the doctor’s degree at the University of Twente,

on the authority of the rector magnificus,
prof. dr. W.H.M. Zijm,

on account of the decision of the graduation committee,
to be publicly defended

on Friday 11 February 2005 at 13.15 hours

by

Anak Agung Julius
born on 7 July 1977

in Palembang, Indonesia

This dissertation has been approved by the promotor
Prof. dr. A. J. van der Schaft

Composition of the Graduation
Committee

Chairperson:
Prof. dr. W.H.M. Zijm Universiteit Twente, EWI

Secretary:
Prof. dr. W.H.M. Zijm Universiteit Twente, EWI

Promotor:
Prof. dr. A.J. van der Schaft Universiteit Twente, EWI

Members:
Prof. dr. J. C. Willems Katholieke Universiteit Leuven, Belgium
Prof. dr. J. M. Schumacher Universiteit van Tilburg, The Netherlands
Prof. dr. E. Brinksma Universiteit Twente, EWI
Prof. dr. G. J. Pappas University of Pennsylvania, USA
Dr. J. W. Polderman Universiteit Twente, EWI
Dr. R. Langerak Universiteit Twente, EWI

Contents

1 Introduction 1

1.1 Background . 1
1.2 Layout and contributions . 3

2 Behaviors and systems 5

2.1 Introduction . 5
2.2 The structure of the time axis . 7
2.3 Linear time invariant systems . 9
2.4 Discrete event systems . 14
2.5 Hybrid systems . 20
2.6 Summary . 25

3 Interconnection of behaviors 27

3.1 Full interconnection . 27
3.1.1 Linear time invariant systems 28
3.1.2 Discrete event systems . 29
3.1.3 Hybrid systems . 31

3.2 Projection and partial interconnection 36
3.2.1 General behaviors . 36
3.2.2 Linear time invariant systems 40
3.2.3 Discrete event systems . 45
3.2.4 Hybrid systems . 50

3.3 Dynamic maps and state maps . 55
3.3.1 Definition . 55
3.3.2 Some subclasses of dynamic maps 59

3.4 Summary . 70

4 Control as interconnection 71

4.1 Introduction . 71
4.1.1 Full interconnection control problems 71
4.1.2 Partial interconnection control problems 72
4.1.3 Control problems with a tolerance gap 79

4.2 Compatibility constraint . 80
4.2.1 Constraint formulation . 80

vii

Contents

4.2.2 Compatibility for linear systems 87
4.2.3 Achievability with compatibility constraint 97

4.3 Input-output partition constraint . 102
4.3.1 Constraint formulation . 102
4.3.2 Achievability with compatibility and input-output partition

constraint . 107
4.4 Control problem with minimal interaction 115
4.5 Summary . 120

5 External equivalence of systems 123

5.1 External behavior equivalence . 123
5.2 Bisimulation as external equivalence 126

5.2.1 Introduction . 126
5.2.2 Bisimulation of other types of systems 130

5.3 Bisimulation in the behavioral setting 132
5.3.1 Bisimilarity as an equivalence relation 134
5.3.2 The maximal bisimulation relation 137
5.3.3 Bisimilarity and state reduction 139
5.3.4 Bisimilarity and the external behavior 144

5.4 Summary . 152

6 Conclusions and recommendations 155

6.1 Conclusions . 155
6.2 Contributions of the thesis . 157
6.3 Recommendations for further research 158

6.3.1 More common structure for general behaviors 158
6.3.2 Compatibility and nonblocking interconnection 160
6.3.3 Input-output partitioning constraint and input enabledness 160
6.3.4 Regular feedback achievability of linear systems 160
6.3.5 Further studies on bisimulation 161

viii

Summary

In this thesis a unified systems theoretic framework for modeling and analysis of
dynamical systems is presented. The approach is based on Willems’ behavioral
approach to systems theory. The main tenet of the behavioral approach is that
systems are identified by their behavior, which is the collection of all possible tra-
jectories of the system.

We present results on the classes of linear systems and discrete event systems,
as well as hybrid systems.

Two main themes are discussed in this book, namely interconnection and exter-
nal equivalence of systems.

We show how the behavioral notion of interconnection can be applied to dy-
namical systems in the general sense, as well as systems of the classes mentioned
above. Interconnection in the behavioral perspective can be regarded as synchro-
nization of the trajectories of the systems. In this thesis we consider full intercon-
nection as well as partial interconnections.

In a full interconnection, complete information about the behaviors involved
is shared. In a partial interconnection, the behaviors involved do not share all
information. The fact that some information is hidden in the interconnection is
represented by a behavioral projection. A projection is a surjective map that maps
one behavior onto another, possibly of a different type. After projection, some
information about the behavior may be lost, since it is possible that multiple tra-
jectories are mapped onto the same trajectory in the domain.

A topic that is closely related to systems interconnection is that of control. We
analyze control problems in a general behavioral setting, and give conditions for
solvability of several types of control problems. We also treat the problem of con-
trol with minimal interaction for linear systems. This problem is about designing
a controller that has as few control variables as possible.

The discussion on external equivalence is mainly centered around the so called
external behavior equivalence and bisimulation. We factor the signal space of the
behavior into internal and external part. The external behavior of a system is
simply its behavior projected to the external part of the signal space.

Bisimulation is a concept that originates from the field of discrete event sys-
tems and concurrent processes. We cast the notion of bisimulation into the behav-
ioral setting, and use it to analyze external equivalence of systems. It is generally
known that bisimilarity is a stronger notion of systems equivalence than external
behavior equivalence. However, with the framework developed in this thesis we
prove that for continuous time linear systems, the two notions coincide.

ix

x

Samenvatting

In dit proefschrift wordt een algemeen systeemtheoretisch kader voor dynami-
sche systemen gepresenteerd. De benadering is gebaseerd op Willems’ behavioral
approach voor systeemtheorie. Het basisidee van de behavioral approach is dat sys-
temen worden vereenzelvigd met hun gedrag (Engels: behavior) in plaats van met
de vergelijkingen die dit gedrag beschrijven. Met het gedrag wordt de verzame-
ling van uitkomsten bedoeld die voldoen aan de wetten van het systeem. Deze
uitkomsten kunnen tijdfuncties, meestal trajecten genoemd, zijn maar ook alge-
mener, functies van combinaties van gebeurtenissen en tijd.

We leiden resultaten voor de klasses van lineaire systemen en discrete event sys-
temen, alsmede voor de klasse van hybride systemen.

De twee hoofdthema’s van dit proefschrift zijn interconnectie en externe equi-
valentie van systemen.

We laten zien hoe de notie van interconnectie zoals bestudeerd in de behavioral
approach kan worden toegepast op dynamische systemen in het algemeen, alsook
op de specifieke bovengenoemde systeemklasses. Interconnectie kan, vanuit het
perspectief van de behavioral approach, worden gezien als synchronisatie van de
trajecten het systeem. In dit proefschrift beschouwen we zowel volledige als par-
tiële interconnceties.

Bij volledige interconnectie wordt alle informatie van de betrokken behaviors ge-
bruikt. Bij partiële interconnectie wordt slechts een gedeelte van de informatie
gebruikt. Het feit dat een gedeelte van de informatie verborgen wordt voor de
interconnectie, wordt gerepresenteerd door een behavioral projectie. Een projectie
is een surjectieve afbeelding die een behavior afbeeldt op een ander behavior, mo-
gelijk van een ander type. Na projectie kan een gedeelte van de informatie van
het behavior verloren zijn gegaan, omdat het mogelijk is dat verschillende trajecten
worden afgebeeld op hetzelfde traject.

Een onderwerp dat nauw verwant is met systeeminterconnectie is besturing. We
analyseren besturingsproblemen in een algemene behavioral setting en geven con-
dities voor de oplosbaarheid van diverse klassen besturingsproblemen. We be-
handelen ook het probleem van besturing-met-minimale-interactie voor lineaire
systemen. Bij dit probleem gaat het er om een regelaar met zo min mogelijk be-
sturingsvariabelen te ontwerpen.

De discussie betreffende externe equivalentie wordt grotendeels toegespitst op
externe behavior equivalentie en op bisimulatie. We splitsen de signaalruimte van
het systeem (behavior) op in een intern en een extern gedeelte. Het externe behavior

xi

van een systeem is simpelweg de projectie van het systeemgedrag op het externe
deel van de signaalruimte.

Het begrip bisimulatie is afkomstig uit de theorie van discrete event systemen
en concurrente processen (concurrent processes). We definiëren bisimulatie binnen
de behavioral setting en gebruiken dat om de externe equivalentie van systemen te
analyseren. Het is algemeen bekend dat bisimulatie een sterkere equivalentienotie
is dan externe behavior equivalentie. Echter, met behulp van het kader ontwikkeld
in dit proefschrift, bewijzen we dat voor continue tijd lineaire systemen beide no-
ties op het zelfde neerkomen.

xii

Notation

Symbol Description Page

∧τ1
τ2

concatenation operator indexed by time τ1 and τ2 7

R,R+ real numbers, nonnegative real numbers 8

Z,Z+ integers, nonnegative integers 8

Rg×q[ξ] polynomial matrices with g rows and q columns, with in-
determinate ξ

9

L
q
c continuous time LTI behaviors with q variables, consisting

of strong solutions to a kernel representation
9

σ unit time-shift operator 9

L
q
d discrete time LTI behaviors with q variables 9

C∞(R,Rq) infinitely differentiable functions mapping R to Rq 10

D(R,Rq) test functions mapping R to Rq 10

Lloc
1 (R,Rq) locally integrable functions mapping R to Rq 10

L̄
q
c continuous time LTI behaviors with q variables, consisting

of weak solutions to a kernel representation
11

−→
L

q
c continuous time LTI behaviors with q variables, consisting

of left-continuous weak solutions to a kernel representation
12

L(A) the language generated by the finite state automaton A. 16

Lm(A) the marked language of the finite state automaton A. 16

L(E) the language associated with the regular expression E. 18

Tζ the hybrid time axis of the hybrid trajectory ζ 22

Nζ(t) the event multiplicity of Tζ at time t ∈ R+ 22

xiii

Symbol Description Page

‖ interconnection operator for behaviors 27

�,P partial ordering and equivalence of behavioral projections 37

4,≈ partial ordering and equivalence of dynamic maps 56

T+ the positive elements of the underlying group of T 59

Bω the suffix behavior corresponding to B 84

n() the McMillan degree of a linear system 88

p() the number of outputs of a linear system 92

πv projection to the external signal space 123

≈ext external behavior equivalence 124

πd projection to the internal signal space 123

≈bis bisimilarity 126

≈sim mutual simulation 129

xiv

1

Introduction

”Begin at the beginning and go on till you come to the end; then stop.” -
Lewis Carroll

Herein we provide an introduction for the research presented in this book. The
first part of this chapter provides a summary and background information about
the results. In the second part we present the structure of this book, and highlight
the contributions made in it.

In this chapter the reader might find a few terminologies that have not been
explained or some ideas that appear vague. They will be explained later in the
following chapters. They are included in this chapter for the ease and complete-
ness of presentation.

1.1 Background

In this thesis we develop a unified systems theoretic framework for modeling and
analysis of dynamical systems. In doing so, we follow the behavioral approach
to systems theory. The main tenet of the behavioral approach is that systems are
identified by their trajectories. The collection of trajectories of a system is called its
behavior.

The behavioral approach to systems theory is pioneered by Jan Willems in a se-
ries of his papers [Wil86a, Wil86b, Wil87]. Subsequent works on behaviors of linear
time invariant systems are documented in, for example, [Wil91, Wil97, PW98] and
many more that we shall mention later in this book. Although most applications
of the behavioral approach are for linear time invariant systems, there have also
been applications in other fields, such as nonlinear systems [Sch03a, PP04], dis-
crete event systems [Sme87, Sme89], and hybrid systems [MR99, JSS03, BKU04].

We aim to develop a unified framework based on the behavioral approach to
facilitate modeling and analysis of general dynamical systems. We shall show
how this framework can be applied to, in particular, linear systems, discrete event
systems and hybrid systems.

The emergence of new branches of systems and control theory, such as hybrid
systems [ACHH93, Alu95, Hen96, BBM98, SS00], has spurred a cross fertilization

1

1 Introduction

of ideas among various existing branches. Hybrid systems, for example, have at-
tracted application of theories from continuous time dynamical systems as well as
discrete event systems. Our motivation is to provide a framework, within which
ideas from different branches of systems theory can be brought and applied to
other branches.

As indicated by the title of the book, there are two main themes that are dis-
cussed in this book, namely interconnection and external equivalence of systems.

Interconnection of systems in the behavioral perspective is understood as syn-
chronization of the trajectories of the systems. Roughly speaking, the trajectories
of two systems are synchronized if they are the same function of time. The tra-
jectories can be either fully synchronized or partially synchronized. By partial we
mean that only a certain aspect or dimension of the trajectories is synchronized.
These kinds of synchronizations are related to the so called full interconnection,
as well as partial interconnection. Interconnection of system is discussed in more
detail in Chapter 3.

One obvious reason why it is desirable to study systems interconnection is that
it enables modular modeling. That is, it enables us to model complex systems
by interconnecting simpler subsystems. Another reason for it, which we shall
discuss in more detail in Chapter 4, is that interconnection is related to control
problems. A control problem in the behavioral perspective can be viewed as fol-
lows. Given a system to be controlled (called the plant), the problem is to find an-
other system (called the controller) that when interconnected with the plant yields
a desired specification [Wil97, Tre99, Sch03a, Bel03]. For linear time invariant
systems, control in the behavioral perspective can be regarded as a generaliza-
tion of that in the classical input-output perspective [Wil97, Bel03]. Some results
on control problems in a general behavioral setting has also been presented in
[SJ02, Sch03a, JS04a]. In addition to that, there has also been research on behav-
ioral control problems in discrete event systems [Sme87, Sme89] and hybrid sys-
tems [MR99, JSS03].

The second theme of the thesis, external equivalence of systems, is covered in
Chapter 5. There are various existing notions of systems equivalence in systems
theory. For linear systems, there are notions such as transfer function equivalence
and state space isomorphism. For discrete event systems, there is a long list of
equivalence notions [HS96], among which are the trace equivalence and bisimu-
lation [Mil89].

In particular, we are interested in bisimulation. The concept of bisimulation orig-
inates in the field of discrete event systems / concurrent processes [Par81, Mil89]
and has been applied to other classes of systems such as, hybrid systems [LPS98,
AHLP00, PvD04], linear systems [Pap03, Sch04a, Sch04b], and nonlinear systems
[Tab04, Sch04b]. We can specify a few reasons why bisimulation is a favorable
notion of equivalence for discrete event systems. First, bisimulation is compu-
tationally cheaper to check than, for example, trace equivalence [HS96]. Second,
bisimulation can be used for reduction of the state space of systems [LPS98]. Third,
bisimulation conserves the temporal logic properties of, for example, LTL and CTL
[AHLP00].

2

1.2 Layout and contributions

Our interest is to put bisimulation as a notion of systems equivalence in the
systems theoretic framework that we develop. As the framework is considerably
general, it is interesting to learn what existing and new results we can derive from
it.

1.2 Layout and contributions

The material presented in this book is based on the following papers [SJ02, JS03,
JSS03, WBJT03, JS04a, JS04b, JWBT04, JPS05]. The book is divided into six chap-
ters. The content of the remaining chapters is briefly summarized as follows.

Chapter 2. In this chapter we lay the mathematical foundation for the discus-
sion in the subsequent chapters. We also explain and review how the be-
havioral perspective can be used for linear systems, discrete event systems
and hybrid systems. This chapter is mainly based on the following papers
[JSS03, JS04a], as well as other references mentioned in the chapter.

Chapter 3. In this chapter we discuss the notion of interconnection of systems
in the behavioral perspective. The discussion begins with full interconnec-
tion, followed with behavioral projection and partial interconnection. We explain
how interconnection in the behavioral perspective fits the notion of systems
interconnection of the classes covered in the previous chapter. In addition,
we also define and discuss the notion of dynamic maps, which is much used
in the later chapters. Results in this chapter are mainly based on the papers
[JS03, JS04a].

Chapter 4. This chapter contains a discussion on the control problem in the be-
havioral setting. We begin with discussing the control problem in a general
setting and introduce the so called canonical controllers. We also introduce
some constraints that can possibly arise in the control problem, particularly
for linear systems. We study the notion of achievability of the specification
given in the control problem. Necessary and sufficient conditions for the ex-
istence of a solution for some types of control problems, which correspond
to the achievability of the specification, are also derived. The conditions for
achievability can be thought of as defining the limit of performance of the
plant, as they tell exactly which specifications can be achieved. The chapter
is concluded by a treatment of the problem called control with minimal inter-
action The material in this chapter is mostly based on the following papers
[SJ02, JS03, WBJT03, JS04a, JPS05].

Chapter 5. In this chapter we discuss some notions of external equivalence of sys-
tems. We begin by introducing the notion of external behavior equivalence,
and then review the notion of bisimulation and other issues related to it.
We cast bisimulation in the framework that has been built so far, and derive
some results from it. This chapter is primarily based on the paper [JS04b].

3

1 Introduction

Chapter 6. This chapter contains conclusions that can be drawn from the discus-
sion so far and highlights the contributions made in this thesis. At the end
of the chapter we also present a few recommendations on possible future
research directions.

4

2

Behaviors and systems

”The behavior is all that is the case.” - Shiva Shankar paraphrasing Lud-
wig Wittgenstein.

2.1 Introduction

The behavioral approach to systems theory was pioneered by Jan Willems, in a
series of his works beginning in the 1980s [Wil86a, Wil86b, Wil87]. Most of the
material presented in this chapter is adopted from subsequent works by him and
his coauthors, particularly [Wil91, Wil97, PW98].

In short, the behavioral approach to systems theory identifies systems with the
collection of all trajectories consistent with the mathematical laws of the systems.

Definition 2.1. A dynamical system Σ is defined as a triple (T,W,B), where T is
called the time axis, W is called the signal space, and B ⊂WT is called the behavior
of the system. The pair (T,W) is defines the type of the system and the behavior.

A behavior is a collection of trajectories, which are functions mapping the time
axis to the signal space. We do not require the trajectories to be total functions, as
they can be partial functions as well. The behavior of a dynamical system is the
collection of all possible trajectories of the system. A trajectory is possible if it is
consistent with the laws describing the system. Thus,

B := {w : T → W | w is compatible with the laws of Σ}. (2.1)

The type of a behavior indicates the type of the trajectories it contains. That is,
the time axis on which they are defined and the space in which they assume their
value.

Example 2.2. Newton’s law of motions stipulates that the force (F) needed to
accelerate a physical body is proportional to the mass (m) and the acceleration
(a). This is epitomized in the well-known relation

F = m · a. (2.2)

5

2 Behaviors and systems

A dynamical system that describes this theory can be written as a triple (T,W,
B). The trajectories of this system are trajectories of the acceleration and the force
variables. Each variable is vector valued, so we take W as, for example, R3 ×
R3. The evolution of the variables takes place continuously, so we take T as, for
example, R. The behavior B is then described by

B :=
{

(F, a) ∈ R → R
3 × R

3 | ∀t ∈ R, F (t) = m · a(t)
}

. (2.3)

If we denote the position of the center of gravity of the body as x ∈ R3, then the
behavior of the dynamical system that describes the relation between the force
and the position of the body is

B :=

{

(F, x) ∈ R → R
3 × R

3 | ∀t ∈ R, F (t) = m ·
d2x(t)

dt2

}

. (2.4)

Example 2.3. The amount of money (balance) in one’s bank account at the end of
every quarter, assuming that there is no cash flow, can be expressed as follows.

xk+1 = b(1 + rk) · xkc , (2.5)

where xk is the balance at the end of the k-th quarter and rk is the effective interest
rate of that quarter. The operation b·c rounds down its argument to the nearest
smaller integer. This dynamical system can also be written as a triple (Z+,R ×
Z,B), where

B := {(r, x) ∈ Z+ → R × Z | ∀k ∈ Z+, xk+1 = b(1 + rk) · xkc} . (2.6)

Notice that the behavior in Example 2.2 is actually a linear space. That is, if
w1, w2 ∈ B then for any α1, α2 ∈ R,

α1w1 + α2w2 ∈ B. (2.7)

This property is not possessed by the behavior in Example 2.3.

Example 2.4. A discrete event system modelled as a finite state automaton (see
more about it in Section 2.4) can be associated with the collection of strings that it
executes. Consider as an example, a printer machine that operates in the following
way. It can receive a printing job, this event is annotated by job. It must print out
the job that it has received and feed out the output before it can receive another
job. Suppose that the printing is associated to an event annotated by print, and
the feeding out the printout is associated to feed. The behavior of this system
can be defined as the collection of all strings such that job.print.feed always
occur in this order. Any string that has, for example, print.job.feed, as a
substring is not an element of the behavior as it corresponds to the acceptance of
a new job before the printout is fed out. The behavior has Z+ as its time axis, and
A = {print, job, feed} as its signal space.

6

2.2 The structure of the time axis

Example 2.5. A hybrid system, loosely speaking, is a dynamical system that has
continuous as well as discrete aspect in its dynamics (see more about it in Section
2.5). Later in this chapter we shall see the dynamics of the temperature inside an
air-conditioned room modelled as a hybrid system. The evolution of the temper-
ature itself is a continuous process, but it interacts with the state of the air con-
ditioner, which is discrete. The behavior of this system consists of all trajectories
describing not only the evolution of the system but also the events related to the
changes in the discrete state. The time axis and the signal space of the behavior
associated to a hybrid system are described in Section 2.5.

2.2 The structure of the time axis

We have seen some instances of the time axis in the previous section. In this book,
we assume that the time axis T has a certain structure that we shall define in this
section.

Definition 2.6. A totally ordered commutative group G is a triple (G,+, <), where
(G,+) is a commutative group and < a total ordering on G such that for any
a, b, c ∈ G,

(a < b) ⇒ (a+ c < b+ c). (2.8)

Throughout the book, when T is not specified, we shall assume that there is an
underlying totally ordered group G = (G,+, <) such that one of the following is
true.
(i) T = G.
(ii) There is a t0 such that T = {t ∈ G | t > t0}.
(iii) There is a t0 such that T = {t ∈ G | t ≥ t0}.

Assuming that the time axis T has a structure as described above, we have a
formal base for defining time-shifting of trajectories and concatenation. Concate-
nation of trajectories is defined as follows.

Definition 2.7. Take any behavior B and let (T,W) be its type. For any two time
instants t1, t2 ∈ T, the concatenation operation ∧t1

t2
is a binary operation. It is

defined such that for any two trajectories w1, w2 ∈ B,

w3 := w1 ∧
t1
t2
w2 ∈ W

T, (2.9)

w3(t) =

{

w1(t) t ≤ t1
w2(t− t1 + t2) t > t1

. (2.10)

Notice that in the definition of concatenation, on the second line of the right
hand side of (2.10), we use time-shifting to connect the future of w2 with the past
of w1. For clarity, please refer to Figure 2.1 for an illustration of the concatenation.

The following table gives examples of time axes that have the above mentioned
structure.

7

2 Behaviors and systems

�

�
�

�

�

�
�

�

�

�

� �
� �

Figure 2.1: An illustration of concatenation of trajectories. The trajectory w3 (thick
line) is defined as w3 = w1 ∧

t1
t2
w2.

T G Ordering relation

R,R+ R standard ordering of real numbers
[t0,∞), t0 ∈ R R standard ordering of real numbers
Z,Z+ Z standard ordering of integers
(R+ × Z+) (R × Z) lexicographic ordering (Definition 2.32)

An important property of the time axis, that we shall use later in this book is
given in the following lemma.

Lemma 2.8. Let G = (G,+, <) be a totally ordered commutative group. Let t1 and
t2 be elements of G. The sets T1 and T2 defined as

Ti := {t ∈ G | t > ti}, i = 1, 2, (2.11)

are isomorphic in the following sense. There exists a one-to-one mapping φ : T1 →
T2 such that for all τ1, τ2 ∈ T1,

φ(τ1) − φ(τ2) = τ1 − τ2. (2.12)

Proof. Define
φ(t) := t− t1 + t2.

This mapping is one-to-one, because its inverse exists. Namely,

φ−1(t) = t− t2 + t1. (2.13)

For all τ1, τ2 ∈ T1,

φ(τ1) − φ(τ2) = τ1 − t1 + t2 − (τ2 − t1 + t2),

= τ1 − τ2. (2.14)

8

2.3 Linear time invariant systems

In the remaining part of this chapter we shall review the classes of systems that
we are dealing with in this book. These systems have been treated numerously in
the literature before, nevertheless, it is essential to review how they all can fit into
the behavioral systems theory framework.

2.3 Linear time invariant systems

A very important class of systems discussed in this book is the finite dimensional
linear time invariant systems, which we shall also refer to as the linear systems. The
behavioral approach to the theory of linear systems is a lively research field in
systems theory. There are numerous literature covering this subject, which we are
not going to enumerate exhaustively. Among them are the references shown in
the beginning of this chapter. For the sake of completeness of the book, we shall
also cover a review on the behavioral systems theory for linear systems.

The class of linear systems is divided into two subclasses, namely continuous
time linear systems and discrete time linear systems. Continuous time linear sys-
tems are typically of type (R,Rq) or (R+,R

q), while discrete time linear systems
are typically of type (Z,Rq) or (Z+,R

q). Here the symbol q denotes the dimen-
sion of the variables involved in the system. For example, the system described in
Example 2.2 has two variables, namely F and a, with a total dimension of six.

Polynomial matrices are essential to the behavioral theory of linear systems. We
shall denote the set of g×q polynomial matrices with real coefficients and indeter-
minate ξ as Rg×q[ξ].

Throughout this book, we restrict the linear systems as systems, whose behavior
admits a so called kernel representation. By this, we mean behaviors that can be ex-
pressed as the kernel of a suitable operator formed by a polynomial matrix R(d

dt
),

for continuous time systems, or R(σ) for discrete time systems. The symbols d
dt

corresponds to the time-differentiation operator, while σ stands for forward unit
time-shift.

(σw)(k) := w(k + 1), ∀k ∈ Z. (2.15)

Thus, by linear systems we mean systems that admit a representation of the form

R

(

d

dt

)

w = 0 or R (σ)w = 0. (2.16)

The class of continuous time linear systems with q variables is denoted by L
q
c ,

while its discrete time counterpart is denoted by L
q
d.

Since linear behaviors in L
q
c are defined to be solutions of a system of linear

differential equations, it is essential to clarify the concept of solution used in the
representation. That is, we need to clarify when a trajectory w : R → Rq is said to
be a solution of

R

(

d

dt

)

w = 0, R ∈ R
g×q[ξ]. (2.17)

9

2 Behaviors and systems

Different concepts of solution will result in different sets of trajectories, and thus
different behaviors. There are two solution concepts that appear in the literature
(see, for example, Chapter 2 in [PW98]). They are the so called strong solution and
weak solution.

Definition 2.9. The strong solutions to the differential equations (2.17) are in-
finitely differentiable functions (also denoted as C∞(R,Rq) functions) such that
(2.17) is satisfied in the usual sense.

In the textbook [PW98], strong solutions are not required to be infinitely dif-
ferentiable, but rather sufficiently many times differentiable, depending on the
differential operator R

(

d
dt

)

. Here we use a slightly different characterization, be-
cause it is mathematically more convenient.

Before we can define the concept of weak solutions, we need to introduce the
class of locally integrable functions and test functions.

Definition 2.10. (cf. Definition 2.3.4 in [PW98]) A function w : R → Rq is said to
be locally integrable if for all a, b ∈ R,

∫ b

a

‖w(t)‖ dt <∞. (2.18)

The symbol ‖·‖ denotes Euclidian norm on Rq. The class of locally integrable func-
tions w : R → Rq is denoted as Lloc

1 (R,Rq).

Definition 2.11. A function w : R → Rq is said to be a test function if it is infinitely
differentiable and has compact support. The class of test functions w : R → Rq is
denoted as D(R,Rq).

Example 2.12. An example of a test function is φ : R → R,

φ(t) = f(t) · f(1 − t), (2.19)

where

f(t) := e−
1

t2 . (2.20)

It can be verified that the test function φ is infinitely differentiable and has a com-
pact support, namely [0, 1].

Definition 2.13. Weak solutions to the differential equations (2.17) are locally in-
tegrable functions w that satisfy (2.17) in the distributional sense, i.e. for any
v ∈ D(R,Rg) the following relation holds.

∫ +∞

−∞

(

R∗

(

d

dt

)

v(t)

)T

w(t) dt = 0, (2.21)

where R∗(ξ) := RT(−ξ).

10

2.3 Linear time invariant systems

From the definitions, we can infer that strong solutions of (2.17) are also weak
solutions. The class of weak solutions is an extension of the strong solutions, so
that the behavior can capture non-smooth functions that are traditionally of inter-
est in linear systems theory, such as the step function and ramp function.

Throughout this book, we associate the symbol L
q
c to the class of behaviors with

q variables, consisting of strong solutions of a kernel representation. When weak
solution is meant, we use the notation L̄

q
c .

Example 2.14. Consider the single integrator system, whose behavior B ∈ L2
c is

described as

B :=

{

(u, y) |
dy

dt
− u = 0

}

. (2.22)

The input-output pair

u(t) =

{

0, t ≤ 0,
1, t > 0,

(2.23)

y(t) =

{

0, t ≤ 0,
t, t > 0,

(2.24)

is only included in B in the weak sense, since it only satisfies the differential equa-
tion in (2.22) in the distributional sense.

There are some results on the topological property of the space of weak solu-
tions, which we shall use later in the book. These results have appeared in [PW98],
and will be presented here without proofs. We begin by defining the notion of con-
vergence in Lloc

1 (R,Rq).

Definition 2.15. (cf. Definition 2.4.2 in [PW98]) A sequence {wk} of functions in
Lloc

1 (R, Rq) is said to converge to w ∈ Lloc
1 (R,Rq) in the sense of Lloc

1 (R,Rq) if for
all a, b ∈ R,

lim
k→∞

∫ b

a

‖wk(t) − w(t)‖ dt = 0. (2.25)

With the notion of convergence above, we can express some topological prop-
erties of the space of weak solutions.

Theorem 2.16. (cf. Section 2.4 in [PW98]) Given any R ∈ Rg×q[ξ], and denote the
behaviors corresponding to the weak solutions and strong solutions ofR(d

dt
)w = 0

as Bw and Bs respectively.
(a) The space Bw is closed. This means for any converging sequence {wk} in Bw,
its limit w is also an element of Bw.
(b) The space Bs is dense in Bw. This means any element w ∈ Bw is approachable
as limit of a converging sequence {wk} in Bs.

Notice that by definition of the space Lloc
1 (R,Rq), the immediate value of a

function at a given point in R is not important. This is because two functions

11

2 Behaviors and systems

w1, w2 ∈ Lloc
1 (R,Rq) are equal (in the sense of Lloc

1 (R,Rq)) if

∫ b

a

‖w1(t) − w2(t)‖ dt = 0, (2.26)

for any a, b ∈ R. For this reason, in some cases, we are interested in the trajectories
in Lloc

1 (R,Rq) with some continuity property.
A function w : R → Rw is left-continuous if the limit limt↑0 w(t) exists for all

t ∈ R. Denote the class of functions in Lloc
1 (R,Rq) that are also left-continuous

as
−→
L loc

1 (R,Rq). The class of behaviors with q variables, consisting of left contin-

uous weak solutions of a kernel representation is denoted as
−→
L

q
c . The class of

left-continuous weak solutions then lies between the class of strong solutions and
weak solutions. The left-continuous weak solutions are also dense in the set of
weak solutions. However, this space of solutions is not closed.

In general, for a given linear behavior B in L
q
c , L̄

q
c ,
−→
L

q
c or L

q
d, there are infinitely

many kernel representations that describe it. Consider the following examples.

Example 2.17. Take a dynamical system Σ = (Z,R2,B), with B ∈ L2
d, where

B :=

{

(w1, w2) ∈ Z → R
2

∣

∣

∣

∣

[

1 1 − σ2

0 1 + σ

] [

w1

w2

]

= 0

}

. (2.27)

We can compute that B consists of trajectories (w1, w2), such that for all k ∈ Z,

w1(k) = 0,

w2(k) = K · (−1)k,

for some K ∈ R. Notice that the following kernel representation

B :=

{

(w1, w2) ∈ Z → R
2

∣

∣

∣

∣

[

1 0
0 1 + σ

] [

w1

w2

]

= 0

}

, (2.28)

also represents the same behavior.

Example 2.18. Take a dynamical system Σ = (R,R2,B), with B ∈ L2
c , where

B :=







(w1, w2) ∈ R → R
2

∣

∣

∣

∣

∣

∣





1 1 − d2

dt2

0 1 + d
dt

1 − d2

dt2
− d

dt





[

w1

w2

]

= 0







. (2.29)

Notice that the third differential equation is nothing but the difference between the
first and the second. Hence this representation is somewhat nonminimal, as one
of the rows can be removed without affecting the behavior. The formal definition
of minimality for kernel representation will be given later in this section.

Equivalent kernel representations of a linear behavior are related by the so
called unimodular matrices. A square polynomial matrix is a unimodular matrix

12

2.3 Linear time invariant systems

if its determinant is a nonzero real number. Equivalently, a unimodular matrix is
a square polynomial matrix, whose inverse exists as a polynomial matrix (which
is also unimodular). Unimodular matrices have an important property described
in the following lemma.

Lemma 2.19. Given any unimodular matrix U ∈ Rq×q[ξ], the strong, weak, and
left-continuous weak behaviors corresponding to the solution of

U

(

d

dt

)

w = 0, (2.30)

and the L
q
d behavior corresponding to the solution of

U (σ)w = 0, (2.31)

consist of only the zero trajectory.

Proof. We have to show that if w satisfies (2.30) or (2.31), then w is the zero trajec-
tory. For the case of the solution to (2.31) and the strong solution to (2.30), this fact
is evident if we premultiply both equations with U−1. For the case of the weak so-
lution to (2.30), it follows from Theorem 2.16 and the fact that the strong behavior
consists of only the zero trajectory. Obviously, the left-continuous part of the weak
behavior consisting of only the zero trajectory consists of only the zero trajectory
as well.

As a consequence of this lemma, we can have the following theorem.

Theorem 2.20. (cf. Theorem 2.5.4 in [PW98]) Given any R1, R2 ∈ Rg×q[ξ] such
that there exists a unimodular U where R1 = UR2. Denote the behaviors corre-
sponding to the weak, left-continuous weak and strong solutions of Ri

(

d
dt

)

w = 0
as Bw,i, Bl,i and Bs,i respectively, i = 1, 2. Also, denote the discrete time behav-
ior corresponding to the solutions of Ri (σ)w = 0 as Bd,i, i = 1, 2. The following
relations hold.

Bw,1 = Bw,2, (2.32)

Bl,1 = Bl,2, (2.33)

Bs,1 = Bs,2, (2.34)

Bd,1 = Bd,2. (2.35)

The previous theorem says that we can manipulate the kernel representation of
an LTI behavior by premultiplying it with a unimodular matrix, while maintaining
the behavior it represents. Manipulating kernel representations can lead to the so
called minimal kernel representation.

A polynomial matrix R ∈ Rg×q[ξ] is said to have full row rank if g≤q and one
can select g columns of R(ξ) to form a square polynomial matrix with nonzero
determinant. It can be proven that R has full row rank if and only if there exists
no polynomial row vector v ∈ R

1×g[ξ], such that v(ξ)R(ξ) = 0.

13

2 Behaviors and systems

A kernel representation of an LTI behavior is minimal if the polynomial matrix
R(ξ) has full row rank. It means that the behavior cannot be represented as a ker-
nel of a polynomial matrix with fewer rows than R. This holds for behaviors in

L
q
c , L̄

q
c ,

−→
L

q
c or L

q
d. It can be proven that for any nonminimal representation (cor-

responding to nonfull row rank polynomial matrix R ∈ Rg×q[ξ]), we can always
compute a unimodular matrix U ∈ Rg×g[ξ] such that

R′(ξ) := U(ξ)R(ξ) (2.36)

can be partitioned as

R′(ξ) =

[

R′′(ξ)
0

]

, (2.37)

where R′′(ξ) is a full row rank polynomial matrix that gives a minimal kernel
representation of the same behavior.

Theorem 2.21. (cf. Theorem 3.6.2 in [PW98]) Two polynomial matrices R1(ξ) and

R2(ξ) in Rg×q[ξ] represent the same behavior (in L
q
c , L̄

q
c ,

−→
L

q
c or L

q
d) if and only if

there exists a unimodular matrix U ∈ Rg×g[ξ] such that R1 = UR2.

Remark 2.22. In equation (2.36)-(2.37) we see that using unimodular matrix U , we
can manipulate a polynomial matrix R to yield an upper full row rank matrix R′′.
In fact, we can also choose U such that R′′ is not only full row rank but also upper
triangular or lower triangular.

2.4 Discrete event systems

The next class of systems we shall cover in this book is the class of discrete event
systems, particularly finite state automata and their languages. As in the case of
LTI systems, the theory of finite state automata and their languages is well estab-
lished, and there is an abundant literature on it. The author would only like to
name a few, which have been used in preparing this book. They are [Büc89, CL99,
HMU01].

Let us start by defining alphabets, strings and languages.

Definition 2.23. An alphabet A is a set of symbols. A string s over the alphabet A

is a sequence of symbols in A. An empty string is denoted by ε. A language over
an alphabet A is a collection of finite-length strings of elements of A.

Example 2.24. Let the alphabet A be {a, b, c}, then the following set

L = {ε, a, aa, abab, acabb}

is an example of a language over A.

14

2.4 Discrete event systems

For a string s, the expression |s| denotes the length of s. We then have |ε| = 0.
Since strings can be seen as partial functions from Z+ to the alphabet A, a lan-

guage over A is a behavior of type (Z+,A). The set of all possible strings (includ-
ing the empty string) of an alphabet A is denoted as A∗, which is also called the
Kleene closure of A. Before we proceed to review some representations of the lan-
guages, we shall review some material about operations on strings and languages.

Strings over an alphabet can be concatenated to form longer strings. The con-
catenation of two strings s1 and s2, both elements of A∗ is written as s1s2, which
is a string formed by merging the tail of s1 with the head of s2. For example, if
s1 = abb and s2 = ccab, then s1s2 = abbccab. The empty string ε acts as the identity
element for concatenation.

If the strings s, t, u, v ∈ A∗ are such that s = tuv, then we say that t is a prefix of
s, u is a substring of s, and v is a suffix of s.

Languages are basically sets. Hence the usual set operations, such as union,
intersection, and difference apply for languages. Other than that, the following
three operations are considered basic for languages [CL99].

concatenation Let La and Lb be languages over A. The concatenation of La and
Lb is defined as

LaLb := {s ∈ A∗ | ∃(sa, sb) ∈ La × Lb s.t. s = sasb}. (2.38)

This means any string in LaLb can be written as a concatenation of a string
in La and a string in Lb.

prefix-closure Let L be a language over A. The prefix closure of L is defined as

L̄ := {s ∈ A∗ | ∃r ∈ A∗ s.t. sr ∈ L}. (2.39)

If L = L̄, then L is said to be prefix closed.

Kleene closure Let L be a language over A. The Kleene closure of L is defined as

L∗ := {ε} ∪ L ∪ LL ∪ LLL ∪ · · · . (2.40)

Although languages can be considered as dynamical systems themselves, in this
book we study them in relation with the automata that produce them. In our point
of view, the automata are representations of the behaviors given by the languages.

Definition 2.25. A finite state automaton (FSA) A is a five-tuple A = (X,E, T,
Xm, x0), where X is a finite set of states, E is the set of events, T ⊂ X × E × X
is the transition relation, Xm ⊂ X is the set of marked states, and x0 ∈ X is the
initial state.

The transition relation is a subset of X × E × X such that (x, a, x′) ∈ T means
the automaton will jump from state x to state x′ with event a. The marked states1

are states that have a special property, which will be discussed later. The initial
state is the state in which the execution of the automaton starts.

1in the literatures, e.g. [HMU01], marked states are also called final states or accepting states.

15

2 Behaviors and systems

Definition 2.26. A finite state automaton A = (X,E, T,Xm, x0) is deterministic if
for any x ∈ X and a ∈ E, there can be at most one x′ ∈ X such that (x, a, x′) ∈ T .
A finite state automaton that is not deterministic is called nondeterministic.

Given a finite state automatonA = (X,E, T,Xm, x0), a finite sequence x0a0x1a1

· · ·xnanxn+1 is called a run or execution of A if for any i ∈ {0, 1, · · · , n} the follow-
ing hold.

ai ∈ E, (2.41a)

xi ∈ X, (2.41b)

(xi, ai, xi+1) ∈ T. (2.41c)

Notice that an execution always starts from the defined initial state x0. The execu-
tion x0a0x1a1 · · ·xnanxn+1 is said to terminate at state xn+1.

We can easily observe that the collection of all executions of A forms a language
over (X∪E). However, in most cases, we are interested in the language consisting
of strings formed by removing the states from the executions.

Definition 2.27. Given an FSA A = (X,E, T,Xm, x0), the language generated by

A, denoted by L(A) consists of strings a0a1 · · · an such that there exists an exe-
cution of A in the form of x0a0x1a1 · · ·xnanxn+1. In other words, we form the
strings in L(A) by removing the symbols related to states in the executions of A.
By definition, L(A) is prefix closed.

Example 2.28. Consider a rather simple production line modeled by an automa-
ton P = (X,E, T, {start}, start). The illustration of the production line and the
automaton P can be seen in Figure 2.2. In this production line, raw material ar-
rives at the processing unit and get processed, provided that the unit is not busy.
If the unit is busy, the material has to wait until it is ready to be processed. After
the process, the end product is fed out of the production unit. Here we assume
that the initial state is start, which is also the only marked state. The language
generated by the automaton consists of all strings of events starting from the ini-
tial state that the automaton can execute. Examples of the strings are (arrival
wait), (arrival process), (arrival process output arrival), and so on.

Another kind of language associated to a finite state automaton A is its marked
language, which is also called the language accepted by A.

Definition 2.29. Given an FSA A = (X,E, T,Xm, x0), the language accepted by

A, or the marked language of A is defined as the subset of L(A) consisting of all
the strings that terminate on a marked state. The marked language ofA is denoted
by Lm(A).

The motivation behind the concept of marked language is the following. It is
often the case that we are not interested in all possible executions of A, but only
in those with a certain property corresponding to the terminal state (i.e. the state
where they terminate). States with this desirable property are the marked states.

16

2.4 Discrete event systems

���������	

�����

������

������	

��

�����

������	

������

����

�������

�������

���������	

������

Figure 2.2: Illustration of Example 2.28. (Top) An illustration of the production
line. (Bottom) An automaton that models it.

17

2 Behaviors and systems

Consider again the automaton in Example 2.28. The state start is marked be-
cause any execution that terminates there represents a completed cycle of produc-
tion. Therefore, the marked language Lm(P) of this automaton consists of strings
corresponding to completed production cycle, with or without waiting.

Given a language, we cannot always find a finite state automaton that accepts it.
The class of languages that can be accepted by finite state automata is called regular
languages. Regular languages are type 3 languages in Chomsky’s classification of
languages. A larger class of languages is, for example, type 2 languages consisting
of context-free languages, which are associated to finite state pushdown automata
[HMU01]. In this book, we shall consider only regular languages.

Although we introduce the class of regular languages by mentioning its connec-
tion with finite state automata, they are also defined by the following property.

Theorem 2.30. (cf. Theorem 4.1 in [HMU01]) Given a regular language L, there
exists an integer n such that every string w ∈ L, with |w| ≥ n, can be broken into
three strings w = xyz, where
(i) y 6= ε,
(ii) |xy| ≤ n,
(iii) For all k ≥ 0, the string xykz ∈ L.

Associated to regular languages, are the so called regular expressions. Regular
expressions can be thought of as formulae that represent regular languages. To
each regular expression E, we can uniquely associate a regular language L(E). In
fact, a language is regular if and only if it can be expressed as a regular expression.
This result is known as the Kleene’s theorem.

Given an alphabet A, the set of regular expressions is recursively defined as
follows.

1. For any symbol a ∈ A, the regular expression a is associated with the lan-
guage {a}. The expression ε is associated with {ε}, and ∅ with the empty
language.

2. If E1 and E2 are regular expressions, then the regular expressions E1 + E2

and E1 · E2 are defined as

L(E1 + E2) = L(E1) ∪ L(E2), (2.42)

L(E1 ·E2) = L(E1)L(E2). (2.43)

3. If E is a regular expression, the regular expressions E∗ and Ē are associated
to the Kleene closure and prefix closure of L(E), respectively.

Notice that now we use the same notation L() to denote the language gener-
ated by an automaton and the language associated with a regular expression. For
brevity, hereafter we shall adopt the common practice of dropping the symbol L()
when we want to denote the language associated to the regular expression E and
symbol E itself instead. Thus instead of writing L(E), we simply write E. From

18

2.4 Discrete event systems

the context, it shall be clear whether a regular expression is meant or the language
associated to it.

Consider again Example 2.28. The generated language and the marked lan-
guage of the automaton P can be written in terms of regular expressions as

L(P) = (arrival(wait.process+ process)output)∗, (2.44)

Lm(P) = (arrival(wait.process+ process)output)∗. (2.45)

In our discussion about behaviors corresponding to discrete event systems so
far, we have considered only generated language and marked language of finite
state automata. Identifying the finite state automata with their languages, we can-
not distinguish, for example, two automata that generate the same language. For
nondeterministic automata, one may be interested in being able to distinguish
between two automata with different branching property. For example, the fol-
lowing two automata generate the same language.

�

�

� �

�

� �

�

�

�

�

�

� �

�

�

If we want to be able to distinguish between these two automata, then we have
to enrich the information contained in the trajectories. Obviously, having trajecto-
ries that contain only the strings of events is not sufficient. One naive alternative
is to include the state. This might be too strong, for example, we might not want
to distinguish between the following two automata.

�

�

� �

�

� �

�

�

� �

�

� �

There are other alternatives. For example, we can consider the behavior as the
collection of the failure traces of the automata [Hoa84, Lan92, HS96]. In the failure
traces, in addition to the usual trace one has the information about the events that
are not possible at the corresponding state. Another alternative is to consider the
behavior as the collection of the ready traces of the automata [BBK87, BKO88]. In

19

2 Behaviors and systems

the ready traces, the additional information is about the events that are possible at
the corresponding state. We are not going further into this issue, but the underly-
ing message is that we can include more information in the trajectories if we want
to be able to distinguish between systems that are otherwise identical.

2.5 Hybrid systems

In this section, we shall discuss hybrid systems from the behavioral theory point
of view. Representations of hybrid systems in the literature are plentiful. Among
them are hybrid automata [ACHH93, Alu95, Hen96, SS00], hybrid process alge-
bra [CR03, BKU04, Cui04, BKU05], hybrid input-output automata [LSV01, LSV03],
general hybrid dynamical systems [BBM98], hybrid behavioral automata [JSS03].
Despite of the varieties, most representations share the same features of hybrid
systems, namely

1. The system has continuous time dynamics that can depend on discrete states.
The discrete states are called locations.

2. Transitions between discrete states are labelled in a similar manner as in
automata.

3. Transitions from one discrete state to another can occur when certain condi-
tions called the guards are satisfied.

4. Transitions must occur when a condition, called invariant condition of a loca-
tion is violated.

5. The transitions can not only change the continuous dynamics, but also im-
pose a reset map on the continuous state.

In this book, we shall represent hybrid systems as hybrid behavioral automata.

Remark 2.31. The reader who knows about the definition of hybrid behavioral au-
tomata in [JSS03] will notice that there is a slight difference between the definition
in this book and that in that in [JSS03]. The difference is that we do not distin-
guish between active and passive transitions. Distinguishing between active and
passive transitions can arguably make system modeling more convenient, at the
cost of more complicated interconnection rules. In the spirit of the behavioral ap-
proach, in this book we opt for simpler interconnection rules, and thus drop the
distinction between active and passive transitions.

A hybrid behavioral automaton A is a 6-tuple (L,W,B, E, T, Inv), where

• L is the set of locations or discrete states,

• W is the set of continuous variables taking values in W,

20

2.5 Hybrid systems

• B maps each location to its continuous behavior. A behavior is a subset of
W

R+ .

• E is the set of events/labels,

• T is the set of transitions. Each transition is given as a 5-tuple (l, a, l′, G,R).
The triple (l, a, l′) is a subset of L × E × L, where l is the origin location, a

is the label of the transition, l′ is the target location. G := (γ, g) is the guard
of the transition, where γ : B(l) × R+ →range(γ) and g ⊂range(γ), and

R : B(l) × R+ → 2B(l′) is the reset map of the transition.

• Inv is the invariant condition for the automata. It maps each location l ∈ L
to a pair Inv(l) := (ν, V), where ν : B(l)×R+ →range(ν) and V ⊂range(ν).

The guard of a transition can be regarded as a Boolean valued function that
takes a continuous trajectory w and a time instant τ and returns true if it is pos-
sible to execute the transition at time τ , provided that the continuous dynamics
follows the trajectory w. The reset map of a transition resets the trajectory of the
continuous dynamic to another one that belongs to the behavior of the target lo-
cation.

The invariant of a location can also be regarded as a Boolean valued function
that takes a continuous trajectory w and a time instant τ . It returns true if w sat-
isfies the invariant condition of the location at time τ . As soon as the invariant
condition is violated, a transition must occur. If there is no enabled transition (no
guard is satisfied) then the system deadlocks. This means the evolution of the tra-
jectory cannot continue beyond the time τ . When we model a hybrid dynamical
system, a deadlock is typically not desired.

The guard G and the invariant Inv(l) as introduced above are instances of dy-
namic predicates. In general, a dynamic predicate is a pair C := (ψ,Ψ),

ψ : B × R+ → range(ψ), (2.46a)

Ψ ⊂ range(ψ). (2.46b)

B signifies a behavior over the time axis R+. A pair (w, t) ∈ B × R+ is said to
satisfy the dynamic predicate C if ψ(w, t) ∈ Ψ. We denote it by (w, t) |= C. The
negation of this statement is denoted by (w, t) 6|= C.

We assume that the maps γ, R, and ν are past-induced and local. A map x :
B×R+ → X is past-induced if for any w1 and w2 in B and τ ∈ R+, the following
implication holds.

(

w1(t)|t≤τ = w2(t)|t≤τ

)

=⇒ (x(w1, τ) = x(w2, τ)) . (2.47)

A map x : B × R+ → X is local if for any w1 and w2 in B and τ ∈ R+, the fol-
lowing implication holds. If there exists an interval B(τ, r) of any length r around

τ such that
(

w1(t)|t∈B(τ,r) = w2(t)|t∈B(τ,r)

)

then (x(w1, τ) = x(w2, τ)) . Examples

of local maps are functions of w(t) and their time derivatives.

21

2 Behaviors and systems

We shall now describe the execution of a hybrid behavioral automaton. Our
description of the execution is similar to the approach in [SS00]. To describe the
execution of a hybrid system, we need to define a suitable time axis. In this case,
we take R+ × Z+ as the hybrid time axis. A hybrid execution is then a partial
function defined on the time axis. First, we define the total ordering > on the
hybrid time axis.

Definition 2.32. Given two pairs (t1, n1) and (t2, n2) elements of R+ × Z+. We
define (t1, n1) < (t2, n2) if t1 < t2, or t1 = t2 and n1 < n2. This ordering is
commonly called lexicographic ordering.

A hybrid execution can be thought of as a trajectory of type (R+ × Z+, L ×
(

W ∪ (E × WR+

)

) in the following sense. We associate each trajectory with the
subset of (R+ × Z+), on which it is defined. If ζ is a hybrid execution, we denote
the subset as Tζ . We assume that for any hybrid execution ζ, its time axis Tζ is
structured such that

• (0, 0) ∈ Tζ,

• For any t ∈ R+ and n ∈ Z+, if (t, n) ∈ Tζ then (t, n′) ∈ Tζ for all nonnegative
integer n′ < n,

• For any t ∈ R+, if (t, 0) ∈ Tζ then (t′, 0) ∈ Tζ for all nonnegative real t′ < t.

Given a hybrid execution ζ with its time axis Tζ , we define the span of the time
axis as

|Tζ | := sup{t ∈ R+ | (t, 0) ∈ Tζ}. (2.48)

We then define the event multiplicity of the time axis at a certain time t ∈ R+,where
0 ≤ t ≤ |Tζ | as

Nζ(t) := max{n ∈ Z+ | (t, n) ∈ Tζ}. (2.49)

We always assume that the event density of 0 is 0. The set of event times of Tζ is
defined as

εζ := {t ∈ R+ | t ≤ |Tζ | and Nζ(t) > 0}. (2.50)

By the assumption above, 0 is not an event time. Moreover, we assume that the set
of event times is countable and has nonzero infimum. We want to include only the
executions where there is a finite time interval between the start of the evolution
at time 0 to the first event time.

For any time instant in Tζ, the execution ζ takes its value according to the fol-
lowing table.

Time instant ζ takes value in

(t, 0) ∈ Tζ L× W

(t, n) ∈ Tζ , n > 0 L× E × WR+

Notice that the second row of the table indicates that at the event times, the tra-
jectory takes value in a function space rather than in a the signal space. This is

22

2.5 Hybrid systems

related to the discrete transitions, as we shall discuss below (particularly condi-
tions (c3) and (c4)).

An execution ζ belongs to the set of executions of the hybrid behavioral automa-
ton A = (L,W,B, E, T, Inv) if the following conditions are satisfied.

(c1) The location is a piecewise constant function of time. It must constant be-
tween event times.

(c2) Denote the smallest event time in εζ as τ1. There is l ∈ L and w ∈ B(l) such
that

ζ(t, 0) = (l, w(t)), 0 ≤ t ≤ τ1, (2.51)

(w(t), t) |= Inv(l), 0 ≤ t ≤ τ1. (2.52)

(c3) For any event time τ ∈ εζ , denote ζ(τ, n) =: (ln,an, wn), then for any n
such that 0 < n ≤ Nζ(τ) there should exists a transition δn = (ln−1,an, ln,
Gn, Rn) ∈ T such that

(wn−1, τ) |= Gn, (2.53)

wn ∈ Rn(wn−1, τ), (2.54)

(wn, τ) |= Inv(ln), (2.55)

with the convention that l0 is the location immediately before the event time
τ and w0 is the continuous trajectory in the interval before the event time τ.
Notice that since this interval can be of finite length, there could be a techni-
cal difficulty as the guards, the reset maps and the invariants need the whole
continuous trajectory as its argument. However, this problem is averted by
requiring that they are local.

(c4) After an event time ε1 until the next event time (if exists) ε2, denote the hybrid
execution at the last event time ζ(ε1, Nζ(ε1)) := (l, a, w). Then for any t such
that ε1 < t ≤ ε2,

ζ(t, 0) = (l, w(t)), (2.56)

(w(t), t) |= Inv(l). (2.57)

In words, the executions of the hybrid behavioral automaton can be described
as follows. Every execution starts in a particular location, say l, and proceed with
a continuous trajectory that satisfies the invariant condition in l. Whenever there
is a transition, whose guard is satisfied, a transition can occur. When a transition
occur, the location changes, say to l′, and also the continuous trajectory is reset to
another one compatible with the reset map and the invariant condition of the new
location. It can also happen that immediately after the transition, the trajectory
satisfies a guard of a transition in the new location. This is what happens at event
times.

23

2 Behaviors and systems

��

��

� �

�����	�

����

���
������

���
���	���

Figure 2.3: An illustration of the hybrid trajectory and hybrid time axis.

Refer to Figure 2.3 for an illustration of a hybrid execution and hybrid time axis.
In this figure, the hybrid time axis (R+ × Z+) is depicted as the base plane. The
trajectory of the location is shown to be constant between event times. The concept
of event times and event density are also shown. However, the part of of trajectory
at event times is not drawn, so that the figure is not overcrowded.

The behavior of a hybrid system represented by a hybrid behavioral automaton
A, denoted by L(A), is the collection of hybrid trajectories obtained by removing
the information about the location from its hybrid executions. Notice that this
is analogous to what we have done with discrete-event systems. We first define
executions of finite state automata, and then define the generated language as
the collection of strings obtained by removing the state from the execution. The
behavior of A is a behavior of type (R+ × Z+,

(

W ∪ (E × WR+

)

).

Example 2.33. Consider a room with an air conditioner. We model the temper-
ature inside the room with a hybrid behavioral automaton A1 = (L1,W1,B1,
E1, T1, Inv1). We use the subscript index 1 because later we are going to use this
automaton again in another example. The set of locations L1 = {with, without}.
The location with represents the temperature dynamics inside the room when the
air conditioner is on. When it is off, the temperature dynamics is represented by
the location without. The set of continuous variable(s) W1 = {x} taking value in
R. The variable x represents the temperature in the room. The behaviors in each
location are given as

B1(with) =

{

x ∈ C
∞(R,R) |

dx

dt
= (10 − x)

}

, (2.58)

B1(without) =

{

x ∈ C
∞(R,R) |

dx

dt
= (30 − x)

}

. (2.59)

The set of labels/events E1 = {on, off}. The set of transitions T1 = {δ11, δ12}

24

2.6 Summary

where

δ11 := (with, off, without, true, R11), (2.60)

δ12 := (without, on, with, true, R12). (2.61)

Here the guards are given as the dynamic predicate true, which is always true for
any trajectory at any time. If we want to express it in a formal way as in (2.46), the
guards can be written as a pair (ψ,Ψ) where Ψ is a singleton and is the image of
ψ. The reset maps R11 and R12 are defined as

R11(x, t) = {x′ ∈ B1(without) | x
′(t) = x(t)}, ∀x ∈ B1(with), t ∈ R+, (2.62)

R12(x, t) = {x′ ∈ B1(with) | x
′(t) = x(t)}, ∀x ∈ B1(without), t ∈ R+. (2.63)

The reset map R11 resets any temperature trajectory in the location with to a tra-
jectory in without, that has the same temperature value. Thus, there is no jump
in the value of the trajectories. The reset map R12 does the opposite action. The
transitions δ11 and δ12 correspond to the events of the air conditioner being turned
on and off respectively.
The invariant condition Inv1 for both locations is satisfied if the temperature is
between 10 and 30 degrees. Thus 10 ≤ x(t) ≤ 30.
The executions of this hybrid behavioral automaton are those corresponding tra-
jectories exponentially converging 10 or 30 depending on the location. At any
time, the location may change due to a transition and thus changing the point of
convergence of the temperature. Notice that since the guards are always enabled,
it is also possible to have multiple but finitely many transitions at a particular
event time.
This model describes a rather irregular air conditioning system, as the tempera-
ture can fluctuate freely between 10 and 30 degrees. Also, the air conditioner can
be switched on and off arbitrarily. In the next chapter, when we discuss intercon-
nection, we shall come back to this example and introduce some kind of control to
regulate the system.

2.6 Summary

In this chapter we have set up a foundation for further discussion in this book. We
begin by introducing the concept of systems as behaviors and explaining about
key ingredients, such as trajectories, time axis, the type of behaviors. Subse-
quently, we elucidate how systems belonging to several classes, namely linear
time invariant systems, discrete event systems and hybrid systems can fit into the
behavioral framework. This is done by pointing out what a behavior is for these
classes of systems.

In the following chapters, we shall discuss further concepts in behavioral sys-
tems theory in a general way, and link them to various classes of systems.

25

2 Behaviors and systems

26

3

Interconnection of behaviors

”Everything is vague to a degree you do not realize till you have tried to
make it precise.” - Bertrand Russell.

3.1 Full interconnection

In this chapter we shall discuss the interconnection of behaviors. First, let us make
it clear what we mean by interconnection. Generally speaking, when two behav-
iors are interconnected, the laws that define them are superimposed so that the
resulting behavior is a collection of trajectories compatible with both behaviors.
In what follows, we shall define interconnection in a mathematically precise way.

We start with the so called full interconnection. A full interconnection is an inter-
connection between behaviors of the same type.

Definition 3.1. Given two behaviors B1 and B2 of the same type, the full inter-

connection between them is denoted and defined as follows.

B1 ‖ B2 := B1 ∩ B2. (3.1)

So far, the reason behind the term ’full’ in ’full interconnection’ is not so appar-
ent. Actually, the term is used for historical reasons, from its use in LTI systems.
Recall that for LTI systems, the type of a behavior is determined by the num-
ber of variables involved in the description. Thus, when two LTI behaviors of the
same type are interconnected, all the variables are involved in the interconnection.
Hence the term ’full’.

Notice that by construction, the full interconnection is both commutative and
associative. That is, for any behaviors of the same type Bi, i ∈ {1, 2, 3}, the fol-
lowing holds.

B1 ‖ B2 = B2 ‖ B1, (3.2)

B1 ‖ (B2 ‖ B3) = (B1 ‖ B2) ‖ B3. (3.3)

27

3 Interconnection of behaviors

Having defined a notion of interconnection, we may then ask the following
question. In the previous chapter we have been discussing about identifying sys-
tems with behaviors. Now we have a mathematical concept called interconnection
defined for behaviors. How does behaviors interconnection relate to systems in-
terconnection? We shall address this question by reviewing what interconnection
means for the classes of systems we have covered in the previous chapter.

3.1.1 Linear time invariant systems

For LTI systems in classes L
q
d, L

q
c ,
−→
L

q
c and L̄

q
c , interconnecting two behaviors means

superimposing the linear differential or difference equations governing each of
the systems. Thus, if two LTI behaviors B1 and B2 represented by the kernel
representation

B1 :=

{

w | R1

(

d

dt

)

w = 0

}

or B1 := {w | R1 (σ)w = 0} , (3.4)

B2 :=

{

w | R2

(

d

dt

)

w = 0

}

or B2 := {w | R2 (σ)w = 0} , (3.5)

are interconnected, then the resulting behavior B := B1 ‖ B2 is given by the
kernel representation

B :=

{

w |

[

R1

R2

](

d

dt

)

w = 0

}

or B :=

{

w |

[

R1

R2

]

(σ)w = 0

}

. (3.6)

Obviously, B := B1 ∩ B2.
As a side remark, the kernel representation given in (3.6) is not necessarily min-

imal, even if (3.4) and (3.5) are minimal kernel representations.

Example 3.2. Think of MIMO feedback control interconnection between the plant,
whose behavior

P :=

{

(u, y) | N

(

d

dt

)

u−D

(

d

dt

)

y = 0

}

. (3.7)

Here N(ξ) ∈ R
d×n[ξ] and D(ξ) ∈ R

d×d[ξ], where n and d are the dimension of the
input and output variables respectively. This is a kernel representation of a linear
system, whose transfer function is H(s) = D−1(s)N(s), assuming that D−1(s)
exists as a rational polynomial matrix (that is, the determinant ofD(ξ) is a nonzero
polynomial). In a similar fashion, a feedback controller with static gain u = Ky
can be expressed as a behavior

C := {(u, y) | u−Ky = 0} . (3.8)

Notice that P and C have the same type, namely (R,Rn+d). The closed-loop system
is given by the behavior interconnection P ‖ C, whose kernel representation is

P ‖ C =

{

(u, y) |

[

N
(

d
dt

)

−D
(

d
dt

)

I −K

] [

u
y

]

= 0

}

. (3.9)

28

3.1 Full interconnection

Remark 3.3. Notice that interconnection of linear systems can be seen as sharing
of variables. This point of view is quite natural if one thinks of interconnection
of physical systems. Consider, for example, an electric circuit. In an electric cir-
cuit, components that are serially connected can be thought of as sharing the same
electric current. Similarly, components in a parallel interconnection share the same
voltage.

3.1.2 Discrete event systems

Behavior interconnection for discrete event systems corresponds to synchroniza-
tion of the representing automata.

Before we proceed to define automata synchronization, recall that the type of
the behavior corresponding to an automaton A is given by (Z+, E), where E is
the set of events defined for the automaton. Therefore, since we are discussing
interconnection of behaviors with the same type, synchronization is also going to
be of automata with the same set of events.

Definition 3.4. Given two automata with the same set of events Ai = (Xi, E, Ti,
Xm, x0i), i = 1, 2. The synchronization of these two automata is an automaton
A = {X,E, T,Xm, x0} such that

X = X1 ×X2, (3.10a)

T = {((x1, x2),a, (x
′
1, x

′
2)) ∈ X × E ×X | (xi,a, x

′
i) ∈ Ti, i = 1, 2.} , (3.10b)

Xm = Xm1 ×Xm2, (3.10c)

x0 = (x01, x02). (3.10d)

We denote the synchronization as A = A1 ‖ A2.

The interpretation behind the definition is that when two automata are syn-
chronized, an event can take place only if both automata can execute that event
simultaneously. Also, the automata must start at their respective initial states, and
a marked state in the combined automaton is a combination of marked states in
each automaton.

The synchronization operation that we introduce here coincides with the product
and parallel composition of automata with the same set of events [CL99].

The correspondence between behavior interconnection and automata synchro-
nization is given in the following theorem.

Theorem 3.5. Given two automata with the same set of events Ai = (Xi, E, Ti,
Xmi, x0i), i = 1, 2. We synchronize these automata to form A = A1 ‖ A2. Let L(·)
and Lm(·) denote the generated and marked language of an automaton, then
(i) L(A) = L(A1) ∩ L(A2), and
(ii) Lm(A) = Lm(A1) ∩ Lm(A2).

Proof. (L(A) ⊂ L(A1) ∩ L(A2)) Take any string s ∈ L(A). Suppose that s = a1a2

· · · an. By definition, there is an execution (x01, x02)a1(x11, x12) a2(x21, x22) · · ·

29

3 Interconnection of behaviors

an(xn1, xn2) by the automatonA, where x11, x21 · · ·xn1 ∈ X1 and x12, x22 · · · xn2 ∈
X2. This implies that x01a1 x11a2x21 · · · anxn1 and x02a1 x12a2x22 · · · anxn2 are ex-
ecutions of A1 and A2 respectively. Therefore s = a1a2 · · ·an is in L(A1) and
L(A2).

(L(A) ⊃ L(A1) ∩ L(A2)) Take any string s ∈ L(A1) ∩ L(A2). Suppose that s =
a1a2 · · · an. By definition, there is an execution x01a1 x11a2x21 · · · anxn1 of A1 and
x02a1 x12a2x22 · · ·anxn2 ofA2. It follows that (x01, x02)a1 (x11, x12) a2(x21, x22) · · ·
an(xn1, xn2) is an execution of A, and thus s ∈ L(A).

(Lm(A) = Lm(A1) ∩ Lm(A2)) Similar as the two parts above, with an additional
requirement that the terminal states of the executions are marked.

Example 3.6. Refer to Figure 3.1. We model a data buffer with the automaton
on the top part of the figure. Denote this automaton as A1 = ({0, 1,E}, {write,
pop}, T1, {E}, 0), with T1 the set of transitions according to the figure. The num-
bered states ofA1 indicate whether the buffer is full. Thus, 0 is empty and 1 is full.
The marked state E is the error state which is reached when an attempt is made
to write to a full buffer. Therefore, the language generated by A1, L(A1), is the
collection of all possible strings of events given executed by A1, which is given by
the following regular expression

L(A1) =
(

write.pop+ write.write.write∗.pop
)

. (3.11)

The marked language of A1, Lm(A1) is the collection of all strings of events termi-
nating in the error state E, given by the regular expression

Lm(A1) = (write.pop)
∗
write.write.write∗

(

pop (write.pop)
∗
.write.write

)∗
.

(3.12)

Because of this interpretation, in this example we are interested in the marked
language. Further, suppose that there are two kinds of user. A well-behaved user
writes a data and always pops the data before writing again. An arbitrary user
attempts to write or pop the data arbitrarily, without any rule. The well-behaved
user is modeled as an automaton A2 = ({0, 1}, {write, pop}, T2, {0, 1}, 0), which
is given as the bottom left figure. The arbitrary user is modeled as an automaton
A3 = ({0}, {write, pop}, T3, {0}, 0), which is given as the bottom right figure.
We can see that

Lm(A2) = (write.pop)
∗
, (3.13)

Lm(A3) = (write+ pop)
∗
. (3.14)

The use of the buffer by the user is modeled as synchronization. Thus the au-
tomata

A4 := A1 ‖ A2 and A5 := A1 ‖ A3

model the well-behaved user and the arbitrary user using the buffer respectively.
Notice that all states of the user are marked. This is because an error is made if

30

3.1 Full interconnection

�����
���

�����������	
�

�

�����

���

�

��
���
���	
�

� �

� � �

�����

���

�����

���������
�

�����

���

Figure 3.1: The automata discussed in Example 3.6.

the buffer reaches the error state regardless of the state of the user. Using Theorem
3.5, we obtain

Lm(A4) = Lm(A1) ∩ Lm(A2) = ∅, (3.15)

Lm(A5) = Lm(A1) ∩ Lm(A3) = Lm(A1) 6= ∅. (3.16)

This result tells us formally that a well-behaved user will never reach the error
state, since there is no string of events terminating on a marked state. However,
the arbitrary user may reach the error state. This, of course, confirms our intuition.

3.1.3 Hybrid systems

Behavior interconnection for hybrid systems can also be seen as synchronization
of the representing hybrid behavioral automata (HBA).

As we have seen in the previous chapter, the type of a hybrid system repre-
sented with a hybrid behavioral automaton (HBA) is determined by the continu-
ous variables and the set of labels defined for the automaton. Hence we shall now
define synchronization of two HBA with the same set of continuous variables and
labels.

Definition 3.7. Given two hybrid behavioral automata with the same set of con-
tinuous variables and events Ai = (Li,W,Bi, E, Ti, Invi), i = 1, 2. The synchro-

nization of these two automata is a hybrid behavioral automaton A = (L,W,B,
E, T, Inv) such that the following holds.

31

3 Interconnection of behaviors

(i) L = L1 × L2.
(ii) B(l1, l2) = B1(l1) ‖ B2(l2), for all l1 ∈ L1 and l2 ∈ L2.
(iii) If for l1 ∈ L1 and l2 ∈ L2 we denote Inv1(l1) := (ν, V) and Inv2(l2) := (ι, I),
then Inv(l1, l2) = ((ν, ι), V ×I).We denote this by Inv(l1, l2) = Inv1(l1)∧Inv2(l2).
(iv) The set of transitions T consists of all transition δ = ((l1, l2),a, (l

′
1, l

′
2), G,R)

such that there exist δ1 = (l1,a, l
′
1, G1, R1) ∈ T1 and δ2 = (l2,a, l

′
2, G2, R2) ∈ T2

such that G = G1 ∧ G2 and R(w, t) = R1(w, t) ∩ R2(w, t) for all w ∈ B(l1, l2) and
t ∈ R+.

The interpretation for this definition is the following. Basically the discrete part
of the dynamics is synchronized in a similar fashion to the discrete event systems.
This can be seen from the fact that we only allow a transition if the two HBA
are ready to perform a transition with the same label. The continuous part of the
dynamics is synchronized in a similar fashion to the LTI systems, in the sense
that we only allow a trajectory if it is accepted by both automata. Invariants are
combined to make sure that a trajectory can continue its evolution in one location
only if it satisfies the invariant conditions associated with both automata. In a
similar way, guards and resets are combined to make sure that a transition and a
reset are possible if they are compatible with each of the automata.

As in the case with discrete event systems, we can prove a theorem analogous
to Theorem 3.5.

Theorem 3.8. Given two hybrid behavioral automata with the same set of contin-
uous variables and events Ai = (Li,W,Bi, E, Ti, Invi), i = 1, 2. We synchronize
these automata to form A = A1 ‖ A2. The behavior of A is given by the following
relation.

L(A) = L(A1) ∩ L(A2). (3.17)

Proof. (L(A) ⊂ L(A1) ∩ L(A2)) Take any hybrid trajectory of A and denote it as
ω. Corresponding to ω, there exists a hybrid execution of A. Denote this execution
as ζ, and denote its hybrid time trajectory as Tζ . By definition, we know that ζ
satisfies all the four conditions (c1)-(c4) given in page 23. Therefore
(A1) The location is a piecewise constant function of time. It must constant be-
tween event times.
(A2) Denote the smallest event time in εζ as τ1. There is (l1, l2) ∈ L = L1 ×L2 and
w ∈ B

(

l1, l2
)

such that

ζ(t, 0) = ((l1, l2), w(t)), 0 ≤ t ≤ τ1, (3.18)

(w(t), t) |= Inv
(

l1, l2
)

, 0 ≤ t ≤ τ1. (3.19)

(A3) For any event time τ ∈ εζ , denote ζ(τ, n) =: ((l1n, l
2
n),an, wn), then for any

n such that 0 < n ≤ Nζ(τ) there should exists a transition δn = ((l1n−1, l
2
n−1),

32

3.1 Full interconnection

an, (l
1
n, l

2
n), Gn, Rn) ∈ T such that

(wn−1, τ) |= Gn, (3.20)

wn ∈ Rn(wn−1, τ), (3.21)

(wn, τ) |= Inv(l1n, l
2
n), (3.22)

with the convention that (l10, l
2
0) is the location immediately before the event time

ε and w0 is the trajectory in the interval before the event time ε.
(A4) After an event time ε1 until the next event time (if exists) ε2, denote the hybrid
trajectory at the last event time ζ(ε1, Nζ(ε1)) := (

(

l1, l2
)

,a, w). Then for any t such
that ε1 < t ≤ ε2,

ζ(t, 0) = (
(

l1, l2
)

, w(t)), (3.23)

(w(t), t) |= Inv
(

l1, l2
)

. (3.24)

Now we have to show the existence of hybrid executions of ζ1 and ζ2 of A1 and
A2 that have the same hybrid trajectory as ζ. Form ζ1 by removing the informa-
tion about the location of A2 from ζ. Similarly, we can form ζ2 by removing the
information about the location of A1 from ζ. It can be verified that ζ1 and ζ2 are
indeed executions of A1 and A2. Notice that when we create ζ1 and ζ2, we only
change the information about the location in ζ. Consequently, ζ1 and ζ2 share the
same hybrid trajectory as ζ.

(L(A) ⊃ L(A1)∩L(A2)) Take any hybrid trajectory in L(A1)∩L(A2) and denote
it as ω. Corresponding to ω, there are hybrid executions ζ1 and ζ2 of A1 and A2.
These hybrid executions has the same hybrid time axis as that of ω. Denote this
hybrid time axis as Tζ . We shall form a hybrid execution of A, whose hybrid tra-
jectory is ω according to the following table.

Time instant Value of ζ1 Value of ζ2 Value of ζ

(t, 0) ∈ Tζ (l1, w(t)) (l2, w(t)) ((l1, l2), w(t))
(t, n) ∈ Tζ, n > 0 (l1,a, w) (l2,a, w) ((l1, l2),a, w)

It can be verified that ζ is indeed an execution ofA.Also notice that ζ has the same
hybrid trajectory as ζ1 and ζ2, namely ω.

Example 3.9. Consider again the model of a room with air conditioner in Exam-
ple 2.33. We are going to model a temperature control system, by using a thermo-
stat system. The thermostat is also modeled as an HBA, A2 = (L2,W2, B2, E2,
T2, Inv2). The set of locations L2 = {th on, th off}. The set of continuous vari-
able(s) W2 = {x} taking value in R. As in A1, the variable x also represents the
temperature in the room. The behaviors in each location are given as

B(th on) = B(th on) := C
∞(R,R). (3.25)

This means the laws of the thermostat basically do not govern the evolution of the
temperature in the room. The thermostat also has two labels/events, on and off,

33

3 Interconnection of behaviors

as is the case with A1.
Recall that the type of the behavior corresponding to a hybrid behavioral automa-
ton is determined by the continuous variables and the set of labels/events. Now
that we know that the behavior of A1 and A2 are of the same type, we can model
the action of thermostat on the air conditioned room by interconnecting them. Let
us first continue with specifying the automaton A2.
The set of transitions in A2 is given by T2 = {δ21, δ22} where

δ21 := (th on, off, th off, G21, R21), (3.26)

δ22 := (th off, on, th on, G22, R22). (3.27)

The guards are dynamic predicates defined as follows.

G21 := (γ21,Γ21) and G21 := (γ22,Γ22), (3.28)

γ21(x, t) = γ22(x, t) := x(t), (3.29)

Γ21 := {y ∈ R | y ≤ 19}, (3.30)

Γ22 := {y ∈ R | y ≥ 21}. (3.31)

Thus, δ21 is enabled if the temperature is less than of equal to 19 degrees, while δ22
is enabled if the temperature is higher than of equal to 21 degrees. The reset maps
R21 and R22 are defined as

R21(x, t) := B(th off), ∀x ∈ B(th on), t ∈ R+, (3.32)

R22(x, t) := B(th on), ∀x ∈ B(th off), t ∈ R+. (3.33)

Hence any temperature trajectory can be reset to any other trajectory in the be-
havior of the target location. This means the thermostat basically does not specify
anything about the reset.
The invariant condition Inv2 is defined as the following dynamic predicate.

Inv2(th on) := (ι1, I1) and Inv2(th off) := (ι2, I2), (3.34)

ι1(x, t) = ι2(x, t) := x(t), (3.35)

I1 := {y ∈ R | y ≥ 19}, (3.36)

I2 := {y ∈ R | y ≤ 21}. (3.37)

Hence an execution is allowed to stay in th on only if the temperature is higher
than or equal to 19 degrees. It is allowed to stay in th off only if the temperature
is lower than or equal to 21 degrees.
The executions of the thermostat automaton are those corresponding smooth tra-
jectories. Every time the invariant condition is violated, a transition occurs and
the location changes. Notice that the guards are defined such that whenever the
invariant of a location is violated, a transition is enabled.
The dynamics of the room temperature when the thermostat is installed is mod-
eled with another hybrid behavioral automaton A which is a synchronization of

34

3.1 Full interconnection

A1 and A2. Denote A = (L,W,B, E, T, Inv). By definition we have

L = L1 × L2, (3.38)

W = W1 = W2, (3.39)

E = E1 = E2. (3.40)

For brevity, we shall use the following notation for locations is L

l00 := (without, th off),

l01 := (without, th on),

l10 := (with, th off),

l11 := (with, th on).

According to the definition of synchronization, the behaviors of each location are
given by

B(l00) = B(l01) =

{

x ∈ C
∞(R,R) |

dx

dt
= (30 − x)

}

, (3.41)

B(l10) = B(l11) =

{

x ∈ C
∞(R,R) |

dx

dt
= (10 − x)

}

. (3.42)

Furthermore, we have that the set of transitions T = {δ1, δ2), where

δ1 = (l00, on, l11, G1, R1) and δ2 = (l11, off, l00, G2, R2). (3.43)

The guards are given by

G1 := (γ1,Γ1) and G2 := (γ2,Γ2), (3.44)

γ1(x, t) = γ2(x, t) := x(t), (3.45)

Γ1 := {y ∈ R | y ≤ 19}, (3.46)

Γ2 := {y ∈ R | y ≥ 21}. (3.47)

The reset maps are given by

R1(x, t) = {x′ ∈ B1(l11) | x
′(t) = x(t)}, ∀x ∈ B1(l00), t ∈ R+, (3.48)

R2(x, t) = {x′ ∈ B1(l00) | x
′(t) = x(t)}, ∀x ∈ B1(l11), t ∈ R+. (3.49)

Finally, the invariant conditions for each location are given by

Inv(l00) = Inv(l10) := (ι00, I00) and Inv(l01) = Inv(l11) := (ι11, I11), (3.50)

ι00(x, t) = ι11(x, t) := x(t), (3.51)

I00 := {y ∈ R | 21 ≥ y ≥ 10}, (3.52)

I11 := {y ∈ R | 30 ≥ y ≥ 19}. (3.53)

35

3 Interconnection of behaviors

The executions of the hybrid automaton A can be described as follows. If the ex-
ecution starts from location l00 or l11 the temperature will be well regulated, in
the sense that starting from any initial temperature between 10 and 30 degrees,
the temperature will evolve towards the interval [19, 21] and remain there. When-
ever the temperature reaches 21 degrees, the air conditioner will be switched on
by the thermostat and the temperature will start dropping. Similarly, whenever
the temperature reaches 19 degrees, the air conditioner will be switched off by the
thermostat and the temperature will start rising. Notice that the execution can
only reach locations l00 and l11.
The fact that the execution starts from location l00 and l11 means that the state of
thermostat matches the actual state of the air conditioning system. When there is a
mismatch, that is executions starting from l01 of l10, the temperature will converge
exponentially to 10 degrees (for l10) or to 30 degrees (for l01). This is because the
thermostat will not execute the necessary transition to turn the air conditioner on
or off, as its state does not match the actual state of the air conditioner.
This undesired phenomenon in the modeling can be averted by, for example, in-
troducing a notion of initial location to the automata [JSS03].

3.2 Projection and partial interconnection

So far we have been discussing interconnection of behaviors with the same type.
In this section, we shall discuss the type of interconnection, where the types of the
behaviors are not equal. First, we shall introduce an operation that can change the
type of a behavior.

3.2.1 General behaviors

Behavior projections are mappings from a behavior to another. Formally, they are
defined as follows.

Definition 3.10. [JS04a] A projection π : B1 → B2 is a total function mapping a
behavior B1 of type (T1,W1) to another behavior B2 of type (T2,W2).

Although projections are defined to be mappings between behaviors, we also
naturally extend the use of projections to denote set-valued maps between behav-
iors. That is, for any X ⊂ B1,

π(X) := {w ∈ B2 | ∃x ∈ X, such that π(x) = w}. (3.54)

We also define the set-theoretic inverse of a projection as follows.

Definition 3.11. Given a projection π : B1 → B2, the set-theoretic inverse of π,
denoted as π−1 is defined for any X ⊂ B2 as

π−1(X) := {w ∈ B1 | π(w) ∈ X}. (3.55)

36

3.2 Projection and partial interconnection

Given a behavior B and a projection π acting on it. The projection π induces an
equivalence relation in B. We define Iπ, the equivalence relation generated by π
by

(w1, w2) ∈ Iπ :⇔ π(w1) = π(w2), (3.56)

for all w1, w2 ∈ B. With this definition, we can then define a partial ordering for
all projections define on a given behavior.

Definition 3.12. Given a behavior B and two projections π and γ acting on it. We
define the partial ordering � as

π � γ :⇔ Iπ ⊇ Iγ . (3.57)

Two projections π and γ are equivalent if π � γ and γ � π. We denote this fact by
π P γ.

The equivalence relation P induces a partitioning on the set of projections de-
fined on a behavior. The partial ordering � can be thought of as a ’measure’ of the
information retained by the projection. Of course, the word ’measure’ is not really
appropriate, as we cannot compare every two projections. We can, however, iden-
tify the maximal and minimal class of projections with respect to � . The maximal
class consists of projections that are isomorphisms. The minimal class consists of
projections that map B to a singleton.

For any π : B1 → B2 and γ : B2 → B3, we can define a composite projection
γ ◦ π as

(γ ◦ π) (w) = γ(π(w)), ∀w ∈ B1. (3.58)

It can be proven that

(γ ◦ π)−1(X) = π−1(γ−1(X)), ∀X ⊂ B3, (3.59)

π � (γ ◦ π) . (3.60)

In fact, we also have the following relation.

Lemma 3.13. Given a behavior B1 and two projections φ and γ acting on it. Sup-
pose φ : B1 → B2 and γ : B1 → B3. There exists a projection θ : B2 → B3 such
that the following diagram commutes if and only if φ � γ.

�� ��

��

37

3 Interconnection of behaviors

Another way to look at the partial ordering � is to relate it with observability.
Given a behavior B and a projection π acting on it, we say that the behavior B is
observable from the projection π if the equivalence relation Iπ generated by π is the
identity relation on B. That is, for any w1, w2 ∈ B, the following statement holds.

[π(w1) = π(w2)] ⇒ (w1 = w2). (3.61)

When the equivalence relation Iπ strictly contains the identity relation, we say
that B is not observable from the projection π. Otherwise stated, the behavior B is
observable from the projection π if and only if π−1◦π is the identity map of B. This
statement is not precise, since the codomain of π−1 is the power set of B instead
of B itself. What is meant in fact, is that for any w ∈ B,

(

π−1 ◦ π
)

(w) returns the
singleton {w}. If B is not observable from the projection π, the range of π−1 ◦π is a
family of subsets of B1, where each subset contains trajectories indistinguishable
by the projection π.

Similarly, we extend the definition to observability of a projection γ from an-
other projection π.

Definition 3.14. For any projections γ and π acting on the same behavior B, let
Iπ be the equivalence relation induced by π, and Iγ be that of γ. We say that γ
is observable from π if Iπ ⊆ Iγ . Equivalently, for any w1, w2 ∈ B, the following
statement holds.

[π(w1) = π(w2)] ⇒ [γ(w1) = γ(w2)] . (3.62)

The definition for observability above can be equivalently expressed as follows.

Lemma 3.15. For any two projections γ and π acting on the same behavior B, the
following statements are equivalent
(i) γ is observable from π,
(ii) γ ◦ π−1 ◦ π ◦ γ−1 is the identity map on the range of γ,
(iii) γ � π.

The whole discussion on observability so far is captured in Figure 3.2. In the
illustration, we see that B1 and γ are observable from π, but π is not observable
from γ.

Take two behaviors B1 and B2 of type (T1,W1) and (T2,W2) respectively. Let
the projections π1 and π2 map B1 and B2 to B′

1 and B′
2, which are behaviors of

the same type, say (T,W). The interconnection between B′
1 and B′

2 can be defined
as a total interconnection. Denote B := B

′
1 ‖ B

′
2. The collection of trajectories of

B1 that are still allowed after the interconnection is π−1
1 B. Similarly, the collec-

tion of trajectories of B1 that are still allowed after the interconnection is π−1
2 B.

This is what we call partial interconnection. See Figure 3.3 for an illustration of this
exposition.

In the previous section it was stated that interconnection of two behaviors can
be thought of superposition of the laws governing each behavior. In other words,
the behaviors involved restrict each other so that only trajectories compatible to
both behaviors are allowed. When behaviors of different types are interconnected,

38

3.2 Projection and partial interconnection

'

' '

1

2
3

π
γ

Figure 3.2: Illustration for observability.

��

��

���

���

�
��

�

�
��

�

Figure 3.3: An illustration for partial interconnection. Here the behavior B :=
(π1B1 ‖ π2B2).

39

3 Interconnection of behaviors

the laws are expressed on different domains. Projection plays the role of determin-
ing how the information corresponding to the laws is to be translated to different
domain.

The relation between projection and partial interconnection can also be sum-
marized as follows. We use behaviors to represent system entities. These system
entities can interact with its environment, or to be precise other system entities in
the environment. Projection plays the role of defining how these entities interact,
since one system can interact with different other entities in many different ways.

In the following subsections we shall see the general concept of projection ap-
plied to behaviors corresponding to linear time invariant systems, discrete event
systems, and hybrid systems.

3.2.2 Linear time invariant systems

Projections in linear time invariant systems typically take the form of variable
elimination. In modeling physical systems from first principles, one often needs
to incorporate some auxiliary variables in the model to make the modeling easier.
Think of, for example, an electric circuit with many components. One may be in-
terested in modeling the relationship between voltages across certain nodes on the
circuit. However, before obtaining the desired model, one might also need to de-
rive a larger model that includes voltages across other nodes and electric currents
in the circuit. These auxiliary variables are also typically called latent variables in
the literature [Wil97, PW98]. Once the full model that includes the latent variables
is obtained, one may want to eliminate the latent variables such that the model is
only expressed in terms of the variables one is interested in. These variables are
called manifest variables [Wil97, PW98].

The textbook [PW98] describes a procedure of eliminating latent variables for
continuous time systems described in kernel representation. We shall include this
result in this book, but we begin with the discrete time version.

Let B ∈ L
w+m

d be described by the following kernel representation.

B =

{

(w,m) |
[

R(σ) M(σ)
]

[

w
l

]

= 0

}

, (3.63)

where R(ξ) ∈ Rg×w[ξ] and M(ξ) ∈ Rg×`[ξ]. Here w represents the manifest vari-
ables, and l the latent variables. Thus, the type of B is (Z,Rw+`). Define the pro-
jection πw : B → B′, where the type of B′ is (Z,Rw), as

πw((w, l)) = w, ∀(w, l) ∈ B. (3.64)

This projection takes a trajectory in B and removes the component corresponding
to the latent variables. The projected behavior πwB can be represented by another
kernel representation according to the following procedure.

1. Compute a unimodular matrix U(ξ) ∈ Rg×g[ξ], such that

U(ξ)M(ξ) =

[

M ′(ξ)
0

]

, (3.65)

40

3.2 Projection and partial interconnection

with M ′(ξ) ∈ Rg
′×`[ξ] a full row rank matrix. The matrix M ′ has g′ rows,

where g′ ≤ g.

2. Premultiply R(ξ) with U(ξ) to yield

U(ξ)R(ξ) =

[

R′(ξ)
R′′(ξ)

]

, (3.66)

with R′(ξ) ∈ Rg
′×w[ξ] and R′′(ξ) ∈ R(g−g

′)×w[ξ]. If g′ = g, then R′′(ξ) = 0.

3. A kernel representation of πwB is given by

πwB = {w | R′′(σ)w = 0} . (3.67)

To prove that this procedure really results in a kernel representation of πwB,
notice that the left unimodular transformation corresponding to U(ξ) gives us an-
other kernel representation of B (see Theorem 2.20), namely

B =

{

(w, l) |

[

R′(σ) M ′(σ)
R′′(σ) 0

] [

w
l

]

= 0

}

. (3.68)

Define a behavior

B
′ := {w | R′′(σ)w = 0} . (3.69)

We shall show that πwB = B′. First, notice that (3.68) already implies that πwB ⊆
B′. To show that πwB ⊇ B′ and hence prove that the two behaviors are equal, we
need to prove that for any trajectoryw satisfying the difference equationR′′(σ)w =
0, we should always be able to find a trajectory l that solves the following differ-
ence equation.

M ′(σ)l = R′(σ)w. (3.70)

Lemma 3.16. Let M(ξ) ∈ Rg×`[ξ] be a full row rank matrix. Given any R(ξ) ∈
Rg×w[ξ] and w : Z → Rw, it is always possible to find a trajectory l : Z → R` such
that the difference equation

M(σ)l = R(σ)w (3.71)

is satisfied.

Proof. Define w′ := R(σ)w. First, notice that if M(σ) is just a polynomial (that is,
1-by-1 matrix), we can always find an l : Z → R

` such that

M(σ)l = w′ (3.72)

is satisfied. Now, we consider the multivariable case. Let U(ξ) ∈ Rg×g[ξ] be such
a unimodular matrix that U(ξ)M(ξ) is upper triangular. That is, if we denote
U(ξ)M(ξ) as M ′(ξ) then

M ′
ij(ξ) = 0, if i > j. (3.73)

41

3 Interconnection of behaviors

Further, if we rearrange the variables in l properly, it is also possible to find a
unimodular U(ξ) such that not only (3.73) is satisfied but also

M ′
ii(ξ) 6= 0, 1 ≤ i ≤ g. (3.74)

Now, notice that l satisfies (3.71) if and only if it satisfies

M ′(σ)l = U(σ)w′. (3.75)

Use the following notation,

l :=
[

l1 l2 · · · l`
]T
, (3.76)

w′′ := U(σ)w′ :=
[

w′′
1 w′′

2 · · · w′′
g

]T
. (3.77)

We can find an l that solves (3.71) by setting li = 0, for all i > g and solving the
following equations.

M ′
gg(σ)lg = w′′

g ,
M ′

(g−1)(g−1)(σ)lg−1 = w′′
g−1 −M ′

(g−1)g(σ)lg,
...

M ′
ii(σ)li = w′′

i −

g
∑

j=i+1

M ′
ij(σ)lj ,

...

M ′
11(σ)l1 = w′′

1 −

g
∑

j=2

M ′
ij(σ)lj .



































































(3.78)

Notice that (3.78) is a set of coupled scalar difference equations, which we know
to be solvable.

With this lemma, we establish that (3.67) does indeed give a kernel representa-
tion of the projected behavior πwB.

For continuous time behaviors corresponding to the strong solutions of a kernel
representation, the same procedure applies and the proof follows by replacing the
σ operator with the differential operator d

dt
. For continuous time behaviors corre-

sponding to the weak solutions of a kernel representation, the procedure generally
does not work [Pol97]. Look at equation (3.70), with σ replaced by d

dt
. The differ-

ential equation

M ′

(

d

dt

)

l = R′

(

d

dt

)

w (3.79)

can pose a smoothness condition on w. Thus, not all w such that R′′(d
dt

)w = 0 can
be matched with a latent trajectory l.Consider, for example, the simple case where
R′′ = 0.

42

3.2 Projection and partial interconnection

When the behavior B ∈ L̄
w+`

c given by the kernel representation

B =

{

(w, l) |
[

R
(

d
dt

)

M
(

d
dt

)]

[

w
l

]

= 0

}

(3.80)

is such that the procedure above does actually compute a kernel representation
of πwB, we say the l is properly eliminable from B [Pol97]. If l is not properly
eliminable from B, then there does not exist any kernel representation of πwB

and πwB is not closed [PW98]. Hence, in this case πwB /∈L̄w
c . However, if we still

proceed according to the elimination procedure above, we still obtain a behavior
B′, whose kernel representation is R′′

(

d
dt

)

w = 0. In [PW98] it is proven that B′

is the closure of πwB. Therefore, if l is properly eliminable from B, then πwB is
closed and coincides with B′. Because of this, the condition where l is properly
eliminable from B is also called exact elimination.

Example 3.17. As an example, we consider the state elimination from an input-
state-output representation of a linear time invariant system. Consider the contin-
uous time system given by the following representation

d

dt
x(t) = ax(t) + bu(t), (3.81a)

y(t) = cx(t). (3.81b)

We assume, for simplicity, that the state, input and output are all one dimensional.
We also assume that c 6= 0. The behavior of this system can be represented by the
following kernel representation.

[

d
dt

− a −b 0
c 0 −1

]





x
u
y



 = 0. (3.82)

Suppose that we are interested in the weak solutions of this equation. Notice that
by premultiplying this kernel representation by the unimodular matrix

U

(

d

dt

)

=

[

0 1
c − d

dt
+ a

]

, (3.83)

we obtain another kernel representation

[

c 0 −1
0 −bc d

dt
− a

]





x
u
y



 = 0. (3.84)

If we follow the analog of the proof of Lemma 3.16 for continuous time systems, it
can be shown that the state is actually properly eliminable from this behavior and
that the kernel representation of the behavior after the state is eliminated is given
by the second row of (3.84),

[

−bc d
dt

− a
]

[

u
y

]

= 0. (3.85)

43

3 Interconnection of behaviors

We have shown that for first order systems, the state is properly eliminable. In
fact, a more general result also holds. Namely, that the states are always properly
eliminable for higher order systems [Pol97].

The concept of observability for linear time invariant systems follows from the
general discussion in the previous subsection. Consider the following theorem.

Theorem 3.18. Let B be a linear time invariant behavior represented by the kernel
representation

B =

{

w | R

(

d

dt

)

w = 0

}

. (3.86)

Let π1 and π2 denote the projection of B to B1 and B2 where the trajectories are
defined as

w1 = T1

(

d

dt

)

w and w2 = T2

(

d

dt

)

w. (3.87)

The projection π1 is observable from π2 if and only if there exist F and G such that

T1 = FR+GT2. (3.88)

Proof. By Definition 3.14, π1 is observable from π2 if and only if the equivalence
class generated by π1 is larger than that by π2. This is equivalent to

ker

[

R
(

d
dt

)

T1

(

d
dt

)

]

⊇ ker

[

R
(

d
dt

)

T2

(

d
dt

)

]

. (3.89)

Equation (3.89) implies that

kerT1

(

d

dt

)

⊇ ker

[

R
(

d
dt

)

T2

(

d
dt

)

]

. (3.90)

This is the case if and only if there exists a polynomial matrix M of appropriate
size, such that

T1 (ξ) = M(ξ)

[

R (ξ)
T2 (ξ)

]

. (3.91)

We partition M into

M :=
[

F G
]

, (3.92)

and complete the proof.

This result also holds for discrete time linear systems, if we replace the operator
d
dt

with σ.
As a special case of this result, we consider the situation where the projections

π1 and π2 simply partition the variables into two groups. That is, col(T1, T2) is the
identity matrix.

44

3.2 Projection and partial interconnection

Theorem 3.19. (cf. Theorem 5.3.3 in [PW98]) Let B be a linear time invariant
behavior represented by the kernel representation

B =

{

(w1, w2) |
[

R1

(

d
dt

)

R2

(

d
dt

)]

[

w1

w2

]

= 0

}

, (3.93)

or

B =

{

(w1, w2) |
[

R1 (σ) R2 (σ)
]

[

w1

w2

]

= 0

}

. (3.94)

Let π1 and π2 denote the projection of B corresponding to the elimination of w2

and w1 respectively. The projection π1 is observable from π2 if and only if the the
(real) matrix R1(ξ) has full column rank for all complex numbers ξ ∈ C.

As an application of this result, consider the linear system given in state-space
representation

dx

dt
= Ax+Bu, (3.95a)

y = Cx+Du. (3.95b)

The behavior of this system can be represented by the following kernel represen-
tation.

[

d
dt
I −A B 0
C D I

]





x
u
y



 = 0. (3.96)

Following Theorem 3.19, the necessary and sufficient condition for observability

of the states from the inputs and outputs is that

[

ξI −A
C

]

should have full row

rank for all ξ ∈ C. This condition coincides with the renowned Hautus test for
observability. In fact, it is also equivalent with the famous Kalman rank condition
for observability [PW98].

3.2.3 Discrete event systems

The most common projection for discrete event systems is similar to what is called
the natural projection of a regular language [CL99]. The idea can be explained as
follows. Let L be a regular language over the alphabet A. Thus L ⊂ A∗, and the
type of the behavior corresponding to L is (Z+,A). For any subset A′ ⊂ A, the
natural projection to A′, denoted as πA′L, maps strings on A∗ to strings on (A′)∗.
The projection acting on L will thus produce a behavior of type (Z+,A

′).The pro-
jection is defined recursively as follows.

1. The empty string is projected to the empty string, thus πA′ε = ε.

2. For any string s ∈ A∗ and a ∈ A,

45

3 Interconnection of behaviors

πA′(sa) =

{

(πA′s)a, if a ∈ A′,
πA′s if a /∈ A′.

. (3.97)

The projection removes all the occurrences of events that are not elements of A′.

However, there is a difference between the natural projection and behavioral
projection as it is introduced in Subsection 3.2.1. The difference lies in the notion
of inverse projection. In the definition of natural projection [CL99], the inverse
projection is defined as

π−1
A′ (X) := {s ∈ A∗ | πA′s ∈ X}. (3.98)

While according to Definition 3.11, it is defined as

π−1
A′ (X) := {s ∈ L | πA′s ∈ X}. (3.99)

Thus, a behavioral projection is defined with L as its domain while a natural pro-
jection has A∗ as its domain.

Since we are interested only in regular languages, it is interesting to verify if
projection preserves the regularity of the language. Indeed, this is the case.

Theorem 3.20. Given a regular language L over an alphabet A. For any subset
A′ ⊂ A, the projected language πA′L is also regular.

Proof. By Kleene’s theorem, a language is regular if and only if it can be expressed
in terms of a regular expression. This implies that L has a regular expression.
We can obtain a regular expression for πA′L by replacing any event that is not
contained in A′ by ε. Thus πA′L is also regular.

Observability between projections, as it is introduced in the general discussion
is Subsection 3.2.1, can be interpreted in the following way. Given a regular lan-
guage L over an alphabet A. Let A1 and A2 be subsets of A, and let π1 and π2

denote the projection with respect to A1 and A2 respectively. Imagine that L is
the language marked (or generated) by a certain discrete event system. There are
two observers, O1 and O2. The observer O1 (resp. O2) can only observe an event
if it is contained in A1 (resp. A2). We say that the projection π1 is observable from
π2 if the observer O2 can always infer about the observation made by O1, given
the knowledge about L, A, A1, A2, and the string s2 that he observes. Notice
that this notion of observability is different from the observability of a language
from another language, which is a well-known concept in supervisory control of
discrete-event systems [Ram87, RW89, CL99]. It is also not about observing the
state of a representing automaton, given a string of events.

For a prefix closed language, the condition for observability between projections
is given by the following simple lemma. This lemma is the analog of Theorem 3.18
for prefix closed regular languages.

46

3.2 Projection and partial interconnection

Lemma 3.21. [JS04a] Given L a prefix closed language, with A as its alphabet.
Assume that every event in A appears at least once1 in L. Denote the projections
with respect to the subsets of events A1 and A2 as π1 and π2 respectively. The
projection π1 is observable from π2 if and only if A1 ⊆ A2.

Proof. (if) Define π′ to be the projection with respect to the set of labels A1, acting
on the codomain of π2. Clearly, we have that π1 = π2 ◦ π′. By (3.60) we can infer
that π1 � π2. Due to Lemma 3.15, this implies observability of π1 from π2. (only
if) Suppose that A1 6⊆ A2. Let a be an element of A1, which is not in A2. Since
L is prefix closed and a appears at least once in the language, there is a string
(possibly empty) s ∈ L, such that sa ∈ L. The pair (s, sa) is in the equivalence
relation induced by π2 but not in that of π1. Thus, π1 6� π2 and therefore π1 is not
observable from π2.

Partial interconnection for discrete event systems typically takes the form of
parallel composition [CL99].

Definition 3.22. Given two regular languages L1 and L2 over the alphabet A1

and A2 respectively. Assume that A1 ∩ A2 = A 6= ∅. Let A1 = (X1,A1, T1,
Xm1, x01) and A2 = (X2,A2, T2, Xm2, x02) be automata that accept the language
L1 and L2. We define the parallel composition of A1 and A2 as the automaton
A = (X,A1 ∪ A1, T, Xm, x0) where

X = X1 ×X2, (3.100a)

T = {((x1, x2),a, (x
′
1, x

′
2)) ∈ X × A ×X | (xi,a, x

′
i) ∈ Ti, i = 1, 2.}∪

{((x1, x2),a, (x
′
1, x2)) ∈ X × (A1 − A) ×X | (x1,a, x

′
1) ∈ T1.}∪

{((x1, x2),a, (x1, x
′
2)) ∈ X × (A2 − A) ×X | (x2,a, x

′
2) ∈ T2.} , (3.100b)

Xm = Xm1 ×Xm2, (3.100c)

x0 = (x01, x02). (3.100d)

This parallel composition is denoted as A = A1 ‖ A2.

The parallel composition thus forces the automata to synchronize on the events
both automata have in common. The executions of the resulting automaton are
related to executions of A1 andA2 as follows. Take any execution ofA with length
N, (x01, x02)a1(x11, x12) a2(x21, x22) · · · aN (xN1, xN2). From the definition of A,
there exist unique I1 and I2, both subsets of {1, 2, . . . , N} such that
(i) I1 ∪ I2 = {1, 2, . . . , N},
(ii) For any 1 ≤ i ≤ N, ai ∈ A1 ∩A2 if and only if i ∈ I1 ∩ I2,
(iii) If we order (ascendingly) and denote the elements of I1 and I2 as {i1, i2,
. . . , in} and {j1, j2, . . . , jm}, where n and m are the cardinalities of I1 and I2, then
the string x01ai1xi11 ai2xi21 · · · ain

xin1 is an execution of A1 and the string x02aj1

xj12aj2 xj22 · · ·ajm
xjm2 is an execution of A2.

1This can be done without any loss of generality, since symbols that never appear can be discarded
from the alphabet.

47

3 Interconnection of behaviors

Thus, every event in an execution of A is in fact executed independently by A1

or A2 if that event is not in A1 ∩ A2. If the event is in A1 ∩ A2, then it is executed
simultaneously by bothA1 andA2. Thus, given any execution ofA, we can always
tell which is the part executed by A1 and which by A2.

Conversely, take any executions ζ1 := x01a11x11a21x21 · · · an1xn1 ofA1 and ζ2 :=
x02a12x12 a22x22 · · ·am2xm2 of A2. Denote the strings of events corresponding to
the executions as s1 and s2 respectively. Also, denote the projections that projects
strings in A∗

1 and A∗
2 to (A1 ∩ A2)

∗ as π1 and π2. If π1s1 = π2s2, we can always
construct an execution ζ of A that matches ζ1 and ζ2.

The relation between partial synchronization and partial behavior interconnec-
tion is given by the following theorem.

Theorem 3.23. Given two finite state automata A1 = (X1,A1, T1, Xm1, x01) and
A2 = (X2,A2, T2, Xm2, x02) such that A1 ∩ A2 = A 6= ∅. Let A = A1 ‖ A2. Denote
the projection that projects the marked language of A1 and A to the event set A

as π1. Similarly, we denote the projection that projects the marked language of
A2 to the event set A as π2. Further, let γ1 and γ2 be the projections that project
the marked language of A to the event set A1 and A2 respectively. The following
relations hold.

γ1Lm(A) = π−1
1 (π1Lm(A1) ‖ π2Lm(A2)), (3.101)

γ2Lm(A) = π−1
2 (π1Lm(A1) ‖ π2Lm(A2)). (3.102)

Proof. Because of symmetry, we do not have to prove both (3.101) and (3.102), but
only one of them. We choose (3.101).

(γ1Lm(A) ⊆ π−1
1 (π1Lm(A1) ‖ π2Lm(A2))) Take any string s1 ∈ γ1Lm(A). By

definition, there exists an s ∈ Lm(A) such that γ1s = s1. We need to prove that
π1s1 ∈ (π1Lm(A1) ‖ π2Lm(A2)). Corresponding to s, there should exists an exe-
cution (x01, x02)a1(x11, x12) a2(x21, x22) · · · aN (xN1, xN2) of A that terminates on
a marked state. We can identify an execution from each of A1 and A2 that corre-
spond to this execution. Denote these executions by ζ1 and ζ2 respectively. Since
both ζ1 and ζ2 terminate on a marked state, obviously the strings of events they
generate, denoted as s′1 and s′2, are in Lm(A1) and Lm(A2) respectively. Moreover,
π1s = π1s

′
1 = π2s

′
2 because any event in A must be executed jointly by A1 and A2.

Therefore π1s1 ∈ (π1Lm(A1) ‖ π2Lm(A2)).
(γ1Lm(A) ⊇ π−1

1 (π1Lm(A1) ‖ π2Lm(A2))) Take any string

s1 ∈ π−1
1 (π1Lm(A1) ‖ π2Lm(A2)).

By definition, there exist strings s′1 ∈ Lm(A1) and s′2 ∈ Lm(A2) such that

π1s
′
1 = π2s

′
2 =: s, (3.103)

π1s1 = s. (3.104)

Now we need to prove that s1 ∈ γ1Lm(A), that is, there is a string s′ in Lm(A) such
that γ1s

′ = s1. First of all, there are executions ζ1 and ζ′1 of A1 corresponding to s1

48

3.2 Projection and partial interconnection

and s′1. There is also an execution ζ′2 of A2 corresponding to s′2. Obviously, since
π1s1 and π2s

′
2 are equal, we can construct an execution ζ′ of A that matches ζ1 and

ζ′2. Denote the string of events corresponding to ζ′ as s′. We obviously have that
s1 = γ1s

′. Since s1 ∈ Lm(A1) and s′2 ∈ Lm(A2), we can infer that s′ ∈ Lm(A).

The expressions γ1Lm(A) and γ2Lm(A) gives the strings of event terminating on
a marked state of A, seen by A1 and A2. Although this theorem only discusses the
marked languages of the automata, we can derive a similar result for the gener-
ated languages by considering a special case where all states of the automata are
marked.

Example 3.24. Consider the automaton model of the production line in Example
2.28. That model gives an outsider point of view of the production line, as after
a batch of raw material arrives, it is not clear whether the material is going to be
processes immediately or has to wait before being processed. To give a more de-
tailed description, we can model the machine that processes the raw material with
a simple automaton M = (X ′, E′, T ′, {start}, start), described by the following
diagram.

�����
����

����	

������

�����
�

There are two states of the machine. It is either in a state in which it is ready to
process the raw material, or in a state where it is waiting for an event called ready

to take place before it can process the next batch of raw material. The event ready
can be thought of as a representation of the time the machine needs between each
process. If the machine is in the waiting state and a batch of material arrives, then
the material has to wait until the machine is ready.
We can form a more detailed model by taking the parallel composition of M and
P . Notice that in this case, the two automata synchronizes on the event process
and wait. The marked languages of the automata are

Lm(P) = (arrival(wait.process+ process)output)∗, (3.105)

Lm(M) = (process.wait∗ready)
∗
. (3.106)

The projected language to the set of joint events are

π1Lm(P) = (wait.process+ process)∗,

π2Lm(M) = (process.wait∗)∗. (3.107)

49

3 Interconnection of behaviors

Thus the intersection is

π1Lm(P) ‖ π2Lm(M) = process(wait.process+ process)∗. (3.108)

We can also see that

π−1
1 (π1Lm(P) ‖ π2Lm(M)) = arrival.process.output.Lm(P), (3.109)

π−1
2 (π1Lm(P) ‖ π2Lm(M)) = (process.(wait.ready+ ready))

∗
. (3.110)

These are the marked language of the composed automaton seen by P and M
respectively.

3.2.4 Hybrid systems

The notion of projection for hybrid systems can be thought of as a combination of
that of continuous time dynamical systems and that of discrete event systems. By
this, we mean that the projection operation on hybrid systems can eliminate some
continuous variables, or erase some events, or be a combination of both.

There is, however, a difference between the way an event is erased in discrete
event systems and in hybrid systems. In the previous subsection, we have seen
that in discrete event systems, events are erased by just removing them from the
strings. In hybrid systems, we remove events and time events because they are
interrelated. So let us define precisely what is meant by hiding some events.

Given a hybrid system represented as a hybrid behavioral automaton A =
(L,W,B, E, T, Inv). Suppose that we want to erase the occurrences of events not
contained in E′ ⊂ E. Take any trajectory of A, and denote it as ω. Correspond-
ing to ω is a hybrid time axis Tω with event times εω. We erase the occurrences of
events that are not in E′ by constructing another trajectory ω′ such that

ω′(t, 0) = ω(t, 0), ∀t ∈ [0, Tω]. (3.111)

For the event times, suppose that t ∈ εω and the event density Nω(t) = n. We
then form a subset of these n events, whose labels are in E′. Denote the number of
elements in this subset as n′. Then the event density of ω′ at time t is n′, because
we leave out events that are not inE′. If n′ = 0 then t is not an event time for ω′.As
a special case, consider the situation where we hide all the events. The resulting
trajectory will be have only piecewise continuous part, with a hybrid time axis
without any event times.

Example 3.25. Consider a system described by the following input-state-output
representation

d

dt

[

x1

x2

]

=

[

0 1
0 −1

] [

x1

x2

]

+

[

0
1

]

u, (3.112)

[

y1
y2

]

=

[

x1

x2

]

. (3.113)

50

3.2 Projection and partial interconnection

This can be thought of as a model for the dynamics of a point mass moving on a
rough surface. The state x1 denotes the position of the mass, and x2 denotes its
velocities. The input u is an external force exerted on the point mass. This is a
simple linear time invariant system. Nevertheless, we can also cast this model as
a hybrid system. It is a hybrid behavioral automaton with only one location, no
transitions, empty set of labels, and an invariant condition that is always true. So
we can write is asA1 = (L1,W1,B1, ∅, ∅,true).With L1 the singleton {l} and B1(l)
is

B1(l) := {(x1, x2, u, y1, y2) | (3.112)-(3.113) are weakly satisfied}. (3.114)

We also assume that the trajectories are left-continuous. The reason why we model
this system as a hybrid system is because we are going to control it with a hybrid
system. The control interconnection will be expressed as a partial interconnection.
Suppose that we want to make sure that the point mass will return to the origin
quickly, and that we can attach y1, y2 and u to the controller. Also suppose that we
have two controllers at our disposal. The first controller has a spring like behavior,
as it is described by

u = −y1. (3.115)

The second controller has a spring-damper like behavior, with a very strong damp-
ing. It is described by

u = −y1 − 10 · y2. (3.116)

If we use only the first controller, the evolution of the position of the mass will be
fast but oscillatory. On the other hand, using only the second controller results in
a sluggish behavior without any oscillation. We then formulate a controller, which
is given as a hybrid behavioral automaton A2 = (L2,W2,B2, E2, T2, Inv2) where

L2 = {l1, l2},

W2 = {u,y1,y2},

B2(l1) = {(u, y1, y2) | (3.115) is weakly satisfied},

B2(l1) = {(u, y1, y2) | (3.116) is weakly satisfied},

E2 = {a, b},

and T = {δ1, δ2}, where

δ1 = (l1, a, l2, G1, R1) and δ2 = (l2, b, l1, G2, R2). (3.117)

The guards are given by

G1 := (γ1,Γ1) and G2 := (γ2,Γ2), (3.118)

γ1(u, y1, y2, t) = γ2(u, y1, y2, t) := y1(t), (3.119)

Γ1 := {y ∈ R | |y| ≤ 0.1}, (3.120)

Γ2 := {y ∈ R | |y| ≥ 0.1}. (3.121)

51

3 Interconnection of behaviors

The reset maps are given by

R1(u, y1, y2, t) = {(u′, y′1, y
′
2) ∈ B2(l2) | y

′
1(t) = y1(t) and y′2(t) = y2(t)}, (3.122)

R2(u, y1, y2, t) = {(u′, y′1, y
′
2) ∈ B2(l1) | y

′
1(t) = y1(t) and y′2(t) = y2(t)}, (3.123)

Finally, the invariant conditions for each location are given by

Inv(l1) := (ι00, I00) and Inv(l2) := (ι11, I11), (3.124)

ι00(u, y1, y2, t) = ι11(u, y1, y2, t) := y1(t), (3.125)

I00 := {y ∈ R | |y| ≥ 0.1}, (3.126)

I11 := {y ∈ R | |y| ≤ 0.1}. (3.127)

The controller is designed such that whenever the mass is further than 0.1 from
the origin, the first controller is in effect. This is to ensure fast response so that
the mass is brought to approach the origin as quickly as possible. Whenever the
mass is closer than 0.1 from the origin, the second controller is in effect to ensure
attenuation of the motion and to prevent oscillation.
We define π1 as the projection acting on the behavior of A1, L(A1), such that the
state variables are eliminated, and π2 as the projection acting on the behavior
of A2, L(A2), such that the events a and b are erased. Notice that π1L(A1) and
π2L(A2) are now of the same type, as they share the same set of continuous vari-
ables, namely {u, y1, y2} and the same set of events, namely the empty set. The
control interconnection can then be expressed as π1L(A1) ‖ π2L(A2). The effect
of the interconnection, seen from A1 is π−1

1 (π1L(A1) ‖ π2L(A2)). Refer to Figure
3.4 to see a comparison between the trajectories of the controlled system when the
first controller, the second controller and the hybrid controller is used.

Example 3.26. We can also model a one degree-of-freedom juggling robot in this
framework [ZB99]. A juggling robot can be modelled as an interconnection of
two systems, namely a ball and a robot, as shown in Figure 3.5. Although the
dynamics of both systems are continuous, they are modelled as hybrid systems.
The reason is because of the collision event that can occur. Each system is mod-
elled as a hybrid behavioral automaton with single location, as in the previous
example. The ball is modelled as A1 = (L1,W1,B1, E, T1, Inv1), where L1 = {l1},
W1 = {x1,x2}, and the behavior B1(l1) consists of all continuously differentiable
trajectories that satisfy the following equation weakly.

d2

dt2
x1 + g = 0. (3.128)

Thus the variable x2 is free, in the sense that its trajectory can be any continuously
differentiable function. The event set E = {a}, T1 = {δ1}, where

δ1 = (l1, a, l1, G1, R1). (3.129)

52

3.2 Projection and partial interconnection

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

4

5

Time(sec)

P
o
s
it
io

n

Figure 3.4: A comparison between trajectories of the position of the point mass
in Example 3.25.Thin line: when the first controller is used. Dashed
line: when the second controller is used. Thick line: when the hybrid
controller is used.

The guard of δ1 is given by

G1 := (γ1,Γ1) (3.130)

γ1(x1, x2, t) := x1(t) − x2(t), (3.131)

Γ1 := {y ∈ R | y ≤ 0}. (3.132)

The reset map is given by

R1(x1, x2, t) =

{

(x′1, x
′
2) ∈ B1(l1) |

dx′1
dt

(t) =
(m−M)dx1

dt
(t) + 2M dx2

dt
(t)

m+M

}

.

(3.133)
Here, m and M denote the mass of the ball and the robot respectively. The reset
maps indicates that the collision is elastic.
The robot is modelled as A2 = (L2,W2,B2, E, T2, Inv2), where L2 = {l2}, W2 =
{x1,x2,u}, and the behavior B2(l2) consists of all continuously differentiable tra-
jectories that satisfy the following equation weakly.

M
d2

dt2
x2 − u = 0. (3.134)

Thus the variable x1 is free. The dynamics of the robot does not explicitly show
the effect of gravity, because we can consider it to be absorbed into the input force

53

3 Interconnection of behaviors

�

��

�

�

�

�
�

�

Figure 3.5: One degree-of-freedom juggling robot [ZB99].

u. The event set E = {a}, T2 = {δ2}, where

δ1 = (l2, a, l2, G2, R2). (3.135)

The guard of δ2 is given by

G2 := (γ2,Γ2) (3.136)

γ2(x1, x2, u, t) := x1(t) − x2(t), (3.137)

Γ2 := {y ∈ R | y ≤ 0}. (3.138)

The reset map is given by

R2(x1, x2, t) =

{

(x′1, x
′
2) ∈ B1(l) |

dx′2
dt

(t) =
(M −m)dx2

dt
(t) + 2mdx1

dt
(t)

m+M

}

.

(3.139)

We define π as the projection acting on the behavior of A2, L(A2), such that the
input force u is eliminated. Now L(A1) and πL(A2) have the same type. The
interconnection can be expressed as L(A1) ‖ πL(A2).

54

3.3 Dynamic maps and state maps

3.3 Dynamic maps and state maps

3.3.1 Definition

The concept of states or state variables is present in almost all branches of dynami-
cal systems theory. In areas as remotely connected as discrete event systems and
linear time invariant systems we can observe that the notion of states is present.
One may think that this is a mere coincidence, but this is not true. The differ-
ent notions of states have something in common. They are all connected by the so
called state property or the axiom of state. In short (and perhaps rather inaccurately),
one can say that a quantity or variable possesses the state property (or satisfies the
axiom of state) if it captures the necessary information about the evolution of the
dynamical system. There is of course a more mathematically formal and rigor
formulation of this property, for example in [PW98].

Following the earlier development in [JS03, RW97], our point of view, which is
based on the behavioral approach, is that states are constructed out of the system
trajectories (the behavior). In the behavioral point of view, the behavior (i.e. the
collection of all possible trajectories) defines/identifies the system. Of course, it is
required that the trajectories bear all information/variables on everything relevant
to the discussion. Irrelevant variables/information, which in the case of linear
time invariant behaviors are called latent variables, generally can be eliminated.
See the previous section for a discussion on this issue.

To explain how states can be constructed from the system’s trajectories, we need
to introduce the concept of dynamic maps [JS04b].

Recall that a dynamical system Σ is defined by the triple (T,W,B). A dynamic
map of the system Σ is a map that has B × T as its domain. For example, φ :
B × T → Φ is a dynamic map. We always assume that dynamic maps are surjec-
tive. Elements of the codomain of a dynamic map are called points. Since systems
are characterized by their behavior and its type, hereafter we can also say that a
dynamic map acts on a behavior whenever the type of the behavior is clear.

Example 3.27. Consider a behavior B ∈ L
2
c given by

B :=

{

(w1, w2) ∈ C
∞(R,R) |

dw1

dt
− w2 = 0

}

. (3.140)

Examples of a dynamic map defined on this system are φ1 : B × T → R, where

φ1(w, t) = w1(t), (3.141)

and φ2 : B × T → R, where

φ2(w, t) =
π

2
w2(t− 1). (3.142)

In fact, any surjective map that has B×T as its domain can be taken as an example.

55

3 Interconnection of behaviors

Example 3.28. Consider a finite state automaton A = (X,E, T,Xm, x0). Suppose
that the automaton is deterministic. Also suppose that the all states are reachable.
Let L(A) be the language generated by A, then the state can be thought of as a
dynamic map acting on L(A). To be precise, we can consider the map φ : L(A) ×
Z+ → X , where φ(s, n) gives the terminal state after executing the first n events
of s. If s has less than n events, then φ(s, n) is simply the last state reached by the
execution.

Notation 3.29. Let φ : B × T → Φ be a dynamic map, and X and Y be subsets
of B and Φ respectively. A time-indexed dynamic map, notated as φt(·), t ∈ T, is
defined as

φt(w) := φ(w; t) := φ(w, t), w ∈ B.

Furthermore the following notations also apply in this book.

φt(X) := {y ∈ Φ | ∃x ∈ X,φt(x) = y},

φ−1
t (Y) := {x ∈ B | ∃y ∈ Y, φt(x) = y}.

The point similarity operator generated by the time-indexed dynamic map φt on
B is defined to be

φ̄t : 2B → 2B,

φ̄t(·) := φ−1
t (φt(·)). (3.143)

For any subset X ⊂ B, φ̄t(X) gives the largest subset of B whose image under φt

is φt(X).
We shall now define a partial ordering for dynamic maps.

Definition 3.30. Let φ and γ be two dynamic maps of B. We say φ 4 γ if and only
if for any t1, t2 ∈ T, and w1, w2 ∈ B the following implication holds.

(γ(w1, t1) = γ(w2, t2)) ⇒ (φ(w1, t1) = φ(w2, t2)) . (3.144)

Notice that given a behavior B of type (T,W) and a dynamic map φ acting on
it, we can also see φ as a projection acting on B mapping it to a behavior of type
(T,Φ). That is, we can define

φ(w)(t) := φ(w, t), ∀w ∈ B, t ∈ T. (3.145)

Since dynamic maps are projections, they also inherit the partial ordering 4 that
we defined for projections. The following lemma relates the partial ordering 4

and � for dynamic maps.

Lemma 3.31. Let φ and γ be two dynamic maps of B. The following relations
hold.

(φ 4 γ) ⇒ (φ � γ) . (3.146)

56

3.3 Dynamic maps and state maps

Proof. Suppose that φ 4 γ. We need to prove that for any two trajectories w1, w2 ∈
B such that γ(w1) = γ(w2), we also have that φ(w1) = φ(w2). Denote γ(w1) as w.
Obviously, we have that for every t ∈ T,

γ(w1, t) = γ(w2, t) = w(t). (3.147)

This implies

φ(w1, t) = φ(w2, t), ∀t ∈ T. (3.148)

Thus φ(w1) = φ(w2). To show that the converse is not necessarily true, suppose
that φ � γ. Take two different trajectories w1, w2 ∈ B and denote γ(w1) = w′

1

and γ(w2) = w′
2. Suppose that w′

1 6= w′
2 but there exist τ1, τ2 ∈ T where w′

1(τ1) =
w′

2(τ2). Denote φ(w1) = w′′
1 and φ(w2) = w′′

2 . Since γ(w1) 6= γ(w2), there is no
restriction on w′′

1 and w′′
2 . However, if φ 4 γ, then we should have that w′′

1 (τ1) =
w′′

2 (τ2). Thus, 4 is stronger than � .

The partial ordering 4 also induces an equivalence relation, which is denoted
by ≈.

(φ ≈ γ) :⇔ (φ 4 γ) and (φ < γ). (3.149)

Analogous to Lemma 3.13, we have the following result.

Lemma 3.32. Given a system Σ = (T,W,B) and two dynamic maps φ and γ de-
fined on it. Suppose φ : B × T → Φ and γ : B × T → Γ. There exists a surjective
mapping θ : Φ → Γ such that the following diagram commutes if and only if
φ < γ.

� � �

As is the case with the partial ordering � (see Subsection 3.2.1), the partial or-
dering 4 can also be thought of as a ’measure’ of information. This is apparent
when we look at Lemma 3.32 above. If φ < γ, there always exists a function θ with
which we can obtain the image of the dynamic map γ, given that of φ. Thus, in
some sense, the image of φ contains more information than that of γ. Also notice
that when φ ≈ γ, the function θ can always be taken as a one-to-one mapping.
This suggests that the image of φ contains as much information as that of γ.

For any system Σ there exists a unique maximal dynamic map (up to ≈), namely
the identity map (or any other isomorphism) from B×T to itself. There also exists
a unique minimal dynamic map (up to ≈), namely the one that maps B × T to a
singleton.

57

3 Interconnection of behaviors

The dynamic maps of a system Σ forms a lattice structure. This is because there
are two binary operations, ∧ (called ’meet’ or ’greatest lower bound’) and ∨ (called
’join’ or ’least upper bound’) defined on them with some special properties [Büc89].
For any φ and γ dynamic maps of Σ the following hold.

(meet1) φ < (φ ∧ γ) and γ < (φ ∧ γ).

(meet2) For any π such that π 4 φ and π 4 γ, π 4 (φ ∧ γ).

(join1) φ 4 (φ ∨ γ) and γ 4 (φ ∨ γ).

(join2) For any π such that π < φ and π < γ, π 4 (φ ∨ γ).

These operations are uniquely defined on the equivalence classes generated by
≈ .

((φ ≈ φ′) and (γ ≈ γ′)) ⇒ ((φ ∧ γ) ≈ (φ′ ∧ γ′)) , (3.150)

((φ ≈ φ′) and (γ ≈ γ′)) ⇒ ((φ ∨ γ) ≈ (φ′ ∨ γ′)) . (3.151)

Take any dynamic maps φ : B×T → Φ and γ : B×T → Γ. Suppose that Iφ and
Iγ are the equivalence relation generated by φ and γ, that is, for any w1, w2 ∈ B

and t1, t2 ∈ T,

((w1, t1), (w2, t2)) ∈ Iφ ⇔ φ(w1, t) = φ(w2, t), (3.152)

((w1, t1), (w2, t2)) ∈ Iγ ⇔ γ(w1, t) = γ(w2, t). (3.153)

Notice that the equivalence relations Iφ and Iγ uniquely identify the classes oh
dynamic maps equivalent to φ and γ.

The class of dynamic maps corresponding to φ ∨ γ is identified by the equiva-
lence relation Iφ∨γ , where

Iφ∨γ := Iφ ∩ Iγ . (3.154)

A representation of this class can be constructed by augmenting φ and γ. Thus
(φ ∨ γ) : B × T → (Φ × Γ), where

(φ ∨ γ) (w, t) := (φ(w, t), γ(w, t)). (3.155)

The class of dynamic maps corresponding to φ ∧ γ is identified by the equiva-
lence relation Iφ∧γ , where

Iφ∧γ := (Iφ ∪ Iγ)e . (3.156)

The symbol (R)e denotes the transitive closure of the relation R.

(R)e := R ∪ (R ◦R) ∪ (R ◦R ◦R) ∪ · · · (3.157)

The fact that these constructions satisfy the special properties for meet and join
follows from the fact that Iφ∨γ is the largest equivalence relation contained in both
Iφ and Iγ , and that Iφ∧γ is the smallest equivalence relation containing both Iφ
and Iγ .

Refer to Figure 3.6 for an illustration of the discussion about the lattice structure
of the dynamic maps. It should be noticed that the lattice shown in the figure does
not really reflect the actual structure of the lattice of dynamic maps, rather it only
serves as an illustration.

58

3.3 Dynamic maps and state maps

����������	���

���

��	�������	���

���

Figure 3.6: Illustration for the lattice structure of the dynamic maps.

3.3.2 Some subclasses of dynamic maps

We can introduce some properties to define subclasses of dynamic maps.

Definition 3.33. A dynamic map φ : (B,T) → Φ is called Markovian or is said to
possess the Markov property if for any w1, w2 ∈ B, τ1, τ2 ∈ T and δ ∈ T+, the
following implication holds.

{(φ(w1, τ1) = φ(w2, τ2)) and (w1|τ1<t≤τ1+δ = w2|τ2<t≤τ2+δ)} ⇒

{φ(w1, τ1 + δ) = φ(w2, τ2 + δ)} . (3.158)

The expression (w1|τ1<t≤τ1+δ = w2|τ2<t≤τ2+δ) means for all t ∈ T such that τ1 <
t ≤ τ1 + δ,

w1(t) = w2(t− τ1 + τ2). (3.159)

In words, a dynamic map is Markovian if whenever two trajectories that are
not distinguishable by the dynamic map at a certain time and they proceed with
the same segment of trajectory, they should remain indistinguishable. Notice that
both the maximal and minimal dynamic maps are Markovian.

Example 3.34. The dynamic map φ1 in Example 3.27 and φ in Example 3.28 are
Markovian. The dynamic map φ2 in Example 3.27 is not Markovian.

Other important subclasses of dynamic maps are characterized by the following
two properties.

Definition 3.35. A dynamic map φ : (B,T) → Φ is called past-induced if for any
w1, w2 ∈ B and τ ∈ T, the following implication holds.

(w1|t≤τ = w2|t≤τ) ⇒ (φ(w1, τ) = φ(w2, τ)) . (3.160)

59

3 Interconnection of behaviors

Definition 3.36. A dynamic map φ : (B,T) → Φ is called future-induced if for any
w1, w2 ∈ B and τ1, τ2 ∈ T, the following implication holds.

(w1|t>τ1
= w2|t>τ2

) ⇒ (φ(w1, τ1) = φ(w2, τ2)) .

The expression (w1|t>τ1
= w2|t>τ2

) means for all t ∈ T such that τ1 < t,

w1(t) = w2(t− τ1 + τ2). (3.161)

The definition of past and future inducedness have appeared earlier in the liter-
atures, e.g. [Sch84].

Lemma 3.37. Let φ and γ be two dynamic maps of Σ. Suppose that φ < γ. If φ is
a past-induced (resp. future-induced), then γ is also past-induced (resp. future-
induced).

Proof. We shall produce the proof for the past-inducedness property, as that for
the future-inducedness follows analogously. Suppose that φ < γ and φ is past-
induced. We have that for any w1, w2 ∈ B and τ ∈ T, the following implication
holds.

(w1|t≤τ = w2|t≤τ) ⇒ (φ(w1, τ) = φ(w2, τ)) . (3.162)

However, we also have that

(φ(w1, τ) = φ(w2, τ)) ⇒ (γ(w1, τ) = γ(w2, τ)) . (3.163)

Together they imply

(w1|t≤τ = w2|t≤τ) ⇒ (γ(w1, τ) = γ(w2, τ)) , (3.164)

which means that γ is also past-induced.

Example 3.38. The dynamic maps φ1 and φ2 in Example 3.27 and φ in Example
3.28 are past induced. Furthermore, φ1 is future induced, φ2 is not future induced,
and φ is not necessarily future induced, depending on the automaton A.

It can be proven that for any system Σ, there exists a unique maximal past-induced
dynamic map (up to ≈). In the literatures, this map is called the Nerode state con-
struction. By symmetry, there also exists a unique maximal future-induced dynamic
map (up to ≈). We shall call this map the Dual Nerode state construction.

The Nerode state construction for a system Σ = (T,W,B) is characterized by
the equivalence relation R where for any w1, w2 ∈ B and τ ∈ T,

(w1, w2) ∈ R ⇔ (w1|t≤τ = w2|t≤τ) . (3.165)

Similarly, the Dual Nerode state construction is characterized by the family of
equivalence relations R where for any w1, w2 ∈ B and τ1, τ2 ∈ T,

(w1, w2) ∈ R ⇔ (w1|t>τ1
= w2|t>τ2

) . (3.166)

60

3.3 Dynamic maps and state maps

����������	���

���

��	�������	���

���

�
���
�����

�	���
������
���

����
�
�	���

������	��

�

��
��
�

��	
��

�

Figure 3.7: An illustration of the past and future inducedness property.

Unique minimal past-induced and future-induced dynamic maps also exist. As
a consequence of Lemma 3.37, they coincide with the minimal dynamic map.
Moreover, it can also be proven that if φ and γ are the Nerode state construction
and the Dual Nerode state construction of Σ, then (φ∨ γ) is the maximal dynamic
map. The discussion in this paragraph can be summarized into the illustration in
Figure 3.7.

The most important subclass of dynamic maps that we discuss is arguably the
so called state maps. State maps are dynamic maps that has the state property. This
property is generally known and discussed in many basic systems theory litera-
tures. It is also known as the axiom of state. See, for example, [PW98].

Definition 3.39. A state map x : (B,T) → X is a dynamic map such that, for any
w1, w2 ∈ B and τ1, τ2 ∈ T, the following implication holds.

{x(w1, τ) = x(w2, τ)} ⇒ {w3 := (w1 ∧
τ1

τ2
w2) ∈ B}. (3.167)

The set X is called the state space of the state map x.

The concept of state maps for LTI behaviors has appeared, for example, in
[RW97]. Since state maps are basically dynamic maps, they also inherit the or-
dering 4 . Elements of the codomain of a state map are called states. Thus states
are a special case of points. The following lemma says something about the struc-
ture of state maps in the lattice of dynamic maps.

Lemma 3.40. Let φ and γ be two dynamic maps of Σ. Suppose that φ 4 γ. If φ is a
state map, then γ is also a state map.

61

3 Interconnection of behaviors

Proof. Suppose that φ is a state map, then for any w1, w2 ∈ B and τ1, τ2 ∈ T, the
following implication holds.

{φ(w1, τ1) = φ(w2, τ2)} ⇒ {w3 := (w1 ∧
τ1

τ2
w2) ∈ B}. (3.168)

We also have that

{γ(w1, τ1) = γ(w2, τ2)} ⇒ {φ(w1, τ1) = φ(w2, τ2)} . (3.169)

Therefore
{γ(w1, τ1) = γ(w2, τ2)} ⇒ {w3 := (w1 ∧

τ1

τ2
w2) ∈ B}.

In fact, we can always guarantee that for any system Σ, there always exists a
state map, as we can (trivially) prove that the maximal dynamic map, the Nerode
state construction and the Dual Nerode state construction are state maps. It is
obvious that the maximal dynamic map also acts as the unique maximal state
map.

The minimal state map(s) is a more interesting object to study. For example,
about its uniqueness. Some necessary and sufficient conditions for the existence of
a unique minimal state map (up to ≈) were given in [JS03]. If such state map exists,
we shall call it the canonical minimal state map. It is the only state map (again, up
to ≈) that satisfies the canonical state property, where the implication in (3.167)
is replaced with a biimplication [JS03]. Furthermore, we can relate the canonical
minimal state map with the past and future inducedness properties through the
following result.

Theorem 3.41. Take any system Σ = (T,W,B). Let us denote the Nerode state
construction and the Dual Nerode state construction as φ and γ respectively. The
system Σ admits a canonical minimal state map, if and only if φ∧ γ is a state map.
Moreover, if φ ∧ γ is a state map, it is also the canonical minimal state map.

Proof. (if) Assume that (φ∧γ) is a state map. We need to show that it is the canon-
ical minimal state map. Denote (φ∧γ) =: ξ. This means that we have to show that
for any w1, w2 ∈ B and τ1, τ2 ∈ T, the following implication holds.

{ξ(w1, τ1) = ξ(w2, τ2)} ⇐ {w3 := (w1 ∧
τ1

τ2
w2) ∈ B}. (3.170)

Notice that φ(w1, τ1) = φ(w3, τ1) and γ(w2, τ2) = γ(w3, τ1). From the definition of
ξ, it follows that ξ(w1, τ1) = ξ(w2, τ2). (only if) Suppose that a canonical minimal
state map exists. Denote it by ξ. This means for any w1, w2 ∈ B and τ1, τ2 ∈ T, the
following biimplication holds.

{ξ(w1, τ1) = ξ(w2, τ2)} ⇔ {w3 := (w1 ∧
τ1

τ2
w2) ∈ B}. (3.171)

Notice that the following two implications are always satisfied.

{φ(w1, τ1) = φ(w2, τ2)} ⇒ {w3 := (w1 ∧
τ1

τ2
w2) ∈ B}, (3.172)

{γ(w1, τ1) = γ(w2, τ2)} ⇒ {w3 := (w1 ∧
τ1

τ2
w2) ∈ B}. (3.173)

62

3.3 Dynamic maps and state maps

�������������	��

�������������	��

��
��������
�����
�	����

������
��������
�����
�	����

���������

�
������ !"� #$%

$&'
()*
+$,
'+

�������������	��
�������

Figure 3.8: An illustration of the relations between maps in the lattice, when the
canonical minimal state map exists. White circles represent dynamic
maps. Shaded circles represent state maps. The black circle represents
the minimal state map.

Together they imply φ < ξ and γ < ξ. Consequently, we also have that (φ∧γ) < ξ.
By Lemma 3.40, this implies that (φ ∧ γ) is a state map.

An immediate consequence of Theorem 3.41 is the following corollary.

Corollary 3.42. Take any system Σ = (T,W,B). If the system admits a canon-
ical minimal state map ξ, then ξ is the only state map that has both the past-
inducedness and future-inducedness properties.

Figure 3.8 and 3.9 illustrate the results about state maps we have discussed so
far. As in previous illustrations, in both figures the lattice of dynamic maps is
portrayed as a planar finite lattice, which is inaccurate. But still, they capture the
main story. Figure 3.8 depicts the situation where the canonical minimal state map
exists, and in Figure 3.9, it does not.

Example 3.43. The dynamic map φ in Example 3.28 is a state map. Thus, the term
’states’ that we use for automaton conform with the concept of state maps.

63

3 Interconnection of behaviors

-./01.2345.106-.7

-0501.2345.106-.7

89:;<9=>.>9
?;5@>:A6>0;5

3A.289:;<9=>.>9
?;5@>:A6>0;5

BCDCEFDGH

I
DHCJKLMNOEM PQR

QST
UVW
XQY
TX

Figure 3.9: An illustration of the relations between maps in the lattice, when the
canonical minimal state map does not exist. White circles represent
dynamic maps. Shaded circles represent state maps. The black circles
represent the minimal state maps.

64

3.3 Dynamic maps and state maps

When we discuss the concept of dynamic maps and state maps for continuous

time LTI systems, it is most convenient to restrict ourselves to the class
−→
L

q
c . Con-

sider the following example as an illustration.

Example 3.44. Consider a simple behavior B ∈
−→
L 1

c given by the following kernel
representation.

B :=

{

(u, y) |
dy

dt
= 0

}

. (3.174)

Consider the dynamic map x : B × R → R defined as

x((y, u), t) := y(t). (3.175)

From our experience with LTI systems we would expect x to be a state map of
the behavior. This is indeed true. To see this, notice that every w ∈ B must be a
constant function for all t ∈ R. In fact, we can also see that x is also the canonical
minimal state map of the behavior.
However, if we had chosen B to be the collection of strong solutions, i.e. B ∈ L1

c

with the same kernel representation, then x is not a state map. This is because
to concatenate two infinitely differentiable functions we need to have that all the
derivatives of any finite order are matched. Therefore, in this case a state map of
B should contain the information about all the derivatives of finite order of both
y and u.
Similarly, if we had chosen B to be the collection of weak solutions, i.e. B ∈ L̄1

c

with the same kernel representation, then the state map x is not well defined. This
is because the immediate value of a trajectory in Lloc

1 (R,R) at a particular time is
immaterial. By requiring left-continuity, this technical difficulty is averted.

By the exposition in the example above, we can formulate the following result.

Theorem 3.45. Given a behavior B ∈ L
q
c given as

B = {w | R

(

d

dt

)

w = 0}. (3.176)

This behavior admits a canonical minimal state map, namely the one defined by

x(w, t) :=











w(t)
d
dt
w(t)

d2

dt2
w(t)
...











. (3.177)

Proof. First, we prove that x is a state map. Take any w1, w2 ∈ B and t1, t2 ∈ R

such that x(w1, t1) = x(w2, t2). We need to prove that w := w1 ∧
t1
t2
w2 is also in B.

However, this fact follows immediately from the fact that
(i) w is infinitely differentiable and

65

3 Interconnection of behaviors

(ii) w1 and w2 are strong solutions of the differential equation in (3.176). To prove
that x is in fact the canonical minimal state map, take anyw1, w2 ∈ B and t1, t2 ∈ R

such that w := w1 ∧t1
t2
w2. We need to prove that x(w1, t1) = x(w2, t2). However,

this fact follows immediately from the fact that w needs to be infinitely differen-
tiable.

Behaviors in
−→
L

q
c also admit canonical minimal state map, namely the observable

state space representation (see Section 6.4 in [PW98]).

Theorem 3.46. Given a behavior B ∈
−→
L

q
c given as

B = {w | R

(

d

dt

)

w = 0}. (3.178)

Suppose that we split w into y and u such that we have the following state space
representation

d

dt
x = Ax+Bu, (3.179a)

y = Cx+Du. (3.179b)

If the state x is observable from u and y, then x is a canonical minimal state map
of B.

Proof. The state space representation (3.179) can be written in the kernel represen-
tation as

[

d
dt
I −A −B 0
C D −I

]





x
u
y



 = 0. (3.180)

Since the representation is observable, from Theorem 3.19 we know that
[

ξI −A
C

]

has full column rank for all ξ ∈ C. Consequently, there exists a unimodular matrix
U such that

U(ξ)

[

ξI −A
C

]

=

[

I
0

]

. (3.181)

If we premultiply the kernel representation (3.180) with U , we get a kernel repre-
sentation of the form

[

I R′
11

(

d
dt

)

R′
12

(

d
dt

)

0 R′
21

(

d
dt

)

R′
22

(

d
dt

)

]





x
u
y



 = 0. (3.182)

This representation shows that x is a dynamic map of B, that is

x = −R′
11

(

d

dt

)

u−R′
12

(

d

dt

)

y. (3.183)

66

3.3 Dynamic maps and state maps

The fact that x has the state property is quite a standard result and the proof can
be found, for example in [PW98]. We shall now prove the x is canonical minimal.
Suppose that w1 = (u1, y1) and w2 = (u2, y2) are both elements of B such that
w := w1 ∧τ1

τ2
w2 is also in B, for some τ1, τ2 ∈ R. Denote x, x1 and x2 as the

trajectory of the state map corresponding to w, w1 and w2 respectively. We shall
prove that x is canonical minimal by showing that x1(τ1) = x2(τ2). Equation
(3.179a) implies that state trajectories are continuous. Thus the following relations
hold.

x1(τ1) = lim
t↑τ1

x1(t) = lim
t↑τ1

x(t)

= lim
t↓τ1

x(t) = lim
t↓τ2

x2(t) = x2(τ2). (3.184)

The dimension of the state space in the observable state space representation is
called the McMillan degree of the behavior [PW98].

The analog of Theorem 3.46 for behaviors in L
q
d can be stated as follows.

Theorem 3.47. Given a behavior B ∈ L
q
d given as

B = {w | R (σ)w = 0}. (3.185)

Suppose that we split w into y and u such that we have the following state space
representation

x(k + 1) = Ax(k) +Bu(k + 1), (3.186a)

y(k + 1) = Cx(k) +Du(k + 1). (3.186b)

If the state x is observable from u and y, then x is a canonical minimal state map
of B.

Proof. The state space representation (3.186) can be written in the kernel represen-
tation as

[

σI −A −σB 0
C σD −σI

]





x
u
y



 = 0. (3.187)

As in the proof of Theorem 3.46, since the representation is observable, we know
that there exists a unimodular matrix U such that

U(ξ)

[

ξI −A
C

]

=

[

I
0

]

. (3.188)

Following the same reasoning as in the proof of Theorem 3.46, we can show that
x is a dynamic map of B. That is, there exist R′

11 and R′
22 (as in (3.183)) such that

x = −R′
11 (σ) u−R′

12 (σ) y. (3.189)

67

3 Interconnection of behaviors

To show that x has the state property, consider two trajectories (x1, u1, y1) and
(x2, u2, y2) that satisfy (3.186). We need to show that for any t1, t2 ∈ Z such that

x1(t1) = x2(t2), (3.190)

the trajectory (u1 ∧t1
t2
u2, y1 ∧t1

t2
y2) ∈ B. That is, there is a state trajectory x̃ such

that (x̃, u1 ∧
t1
t2
u2, y1 ∧

t1
t2
y2) satisfies (3.186). We construct x̃ as

x̃ := x1 ∧
t1
t2
x2. (3.191)

Define ũ := u1 ∧
t1
t2
u2 and ỹ := y1 ∧

t1
t2
y2. Thus, we need to prove that the trajectory

(x̃, ũ, ỹ) satisfies (3.186). For k < t1 and k > t1, we can see that (x̃, ũ, ỹ) satisfies
(3.186) by construction. For k = t1, we need to show that

x̃(t1 + 1) = Ax̃(t1) +Bũ(t1 + 1), (3.192a)

ỹ(t1 + 1) = Cx̃(t1) +Dũ(t1 + 1), (3.192b)

or equivalently

x2(t2 + 1) = Ax1(t1) +Bu2(t2 + 1), (3.193a)

y2(t2 + 1) = Cx1(t1) +Du2(t2 + 1). (3.193b)

But this is also true, since x1(t1) = x2(t2). Now we shall prove that x is canoni-
cal minimal. We do it by showing that x is both past induced and future induced.
Take any two trajectories (x1, u1, y1) and (x2, u2, y2) that satisfy (3.186). To demon-
strate past inducedness we need to show that if t ∈ Z is such that for all k ≤ t,

u1(k) = u2(k), (3.194)

y1(k) = y2(k), (3.195)

then x1(t) = x2(t). Because of linearity, this is equivalent to showing that for any
(x, u, y) satisfying (3.186) such that for all k ≤ t,

u(t) = 0, (3.196)

y(t) = 0, (3.197)

we should have x(t) = 0. Substituting (3.196) and (3.197) to (3.186), we infer that
for all k < t the following equations hold.

x(k + 1) = Ax(k), (3.198)

0 = Cx(k). (3.199)

Because of observability, we can conclude that x(t) = 0. Following the same rea-
soning, to demonstrate future inducedness we need to show that for any (x, u, y)
satisfying (3.186) such that for all k > t,

u(t) = 0, (3.200)

y(t) = 0, (3.201)

68

3.3 Dynamic maps and state maps

we should have x(t) = 0. We know that for all k ≥ t the following equations hold.

x(k + 1) = Ax(k), (3.202)

0 = Cx(k). (3.203)

Again, because of observability, we can conclude that x(t) = 0.

As in the case of
−→
L

q
c , the dimension of the state space in the observable state

space representation is called the McMillan degree of the behavior [PW98]. Notice

that in the case of behaviors in
−→
L

q
c , the dynamic maps of interest typically take

the form of linear combination of the trajectory and its derivatives. In the case of
L

q
d, the dynamic maps of interest typically take the form of linear combination of

the trajectory and its shifted version. State maps of these forms are called linear
differential map and linear difference maps respectively.

Remark 3.48. The proposed state space representation (3.186) differs from the
usual representation

x(k + 1) = Ax(k) +Bu(k), (3.204a)

y(k) = Cx(k) +Du(k). (3.204b)

This is because we can prove that x in the state space representation (3.204) is
not a state map. It would be a state map if concatenation was defined differently.
Namely, if w1 ∧

t1
t2
w2 was defined as

(

w1 ∧
t1
t2
w2

)

(t) =

{

w1(t), t < t1
w2(t− t1 + t2), t ≥ t1

. (3.205)

Notice the difference in the inequality signs with the actual definition. The reason
we do not use this definition is because the definition that we are using now is
more convenient to use with hybrid systems.
Nevertheless, despite of the difference between (3.186) and (3.204), we have seen
that, for example, in terms of characterization of observability, they both have the
same characterization.

As the final result in this chapter, we present the relation between the canonical
minimal state map and full interconnection.

Theorem 3.49. Let two behaviors B1 and B2 be of the same type (T,W). Fur-
thermore, assume that both behaviors are not disjoint and they admit canoni-
cal minimal state maps, namely φ1 and φ2. The behavior B := B1 ‖ B2 has
φ1|B×T ∨φ2|B×T as its canonical minimal state map. The symbols φi|B×T, i = 1, 2,
signifies the dynamic map φi restricted to B × T.

Proof. For brevity we denote φ := φ1|B×T ∨ φ2|B×T. Take any two trajectories w1

and w2 in B and any τ1, τ2 ∈ T. Notice that φ(w1, τ1) = φ(w2, τ2) is equivalent to

φ1(w1, τ1) = φ1(w2, τ2), (3.206)

φ2(w1, τ1) = φ2(w2, τ2). (3.207)

69

3 Interconnection of behaviors

These relations are equivalent to

w1 ∧
τ1

τ2
w2 ∈ B1, (3.208)

w1 ∧
τ1

τ2
w2 ∈ B2. (3.209)

Thus φ(w1, t) = φ(w2, t) is equivalent to w1 ∧τ1
τ2
w2 ∈ B. Therefore φ is a canonical

minimal state map of B.

3.4 Summary

In this chapter we mainly discuss the concept of interconnection of behaviors. We
begin with the notion of full interconnection, that is, interconnection of behav-
iors with the same type. In this case, interconnection simply means set-theoretic
intersection.

We then proceed to discuss interconnection of behaviors with different types.
To do so, first the concept of behavior projection is introduced. A projection is a
mapping that maps a behavior to another behavior, possibly with a different type.
With projections, two behaviors of different types can be mapped to two other
behaviors with the same type. From here, the interconnection is done in the usual
way.

In the last section, the concept of dynamic maps is introduced. We show that
the dynamic maps of a system has a lattice structure. We also introduce some sub-
classes of dynamic maps, which are characterized by special properties. The most
important subclass of dynamic maps is the state maps. State maps are dynamic
maps that possess the state property.

70

4

Control as interconnection

”...and now for something completely different, a man with three noses.” -
Monty Python’s Flying Circus

4.1 Introduction

In this chapter we discuss about control problems in the behavioral setting. This
is not the first time control problem is discussed in the behavioral framework.
We would like to refer the reader to the literature, in which control problems for
linear systems [Wil97, TW99, Tre99, BT02, Bel03, WBJT], nonlinear systems [PP04],
discrete event systems [Sme87, Sme89], and hybrid systems [MR99, JSS03]. This
list of literature is by no means exhaustive.

There are many variants of control problems, which share the same salient fea-
ture. Control problems in the behavioral setting can be expressed as follows.

Control problem Given a system called the plant. The problem is to find a behav-
ior (called the controller), which when interconnected with the plant behavior
in a certain manner yields some desired properties, usually given in terms
of another behavior (called the specification).

We shall discuss some variants of the control problem and their conditions of
solvability. A control problem is solvable if it is possible to find a controller that
meets the requirement of the problem.

4.1.1 Full interconnection control problems

Full interconnection control problems are the simplest variant. The behaviors in-
volved are of the same type, so that no projection is necessary. The problem is
typically expressed as the following.

Problem 4.1. Given the plant P and the specification S, find a controller C such
that

P ‖ C = S. (4.1)

71

4 Control as interconnection

Notice that (4.1) implicitly suggests that all the behaviors involved are of the
same type. Examples of control problems of this type are state feedback control
problem (where the controller can use all the plant variables) and supervisory
control of discrete event systems where all events are observable and controllable
[Ram87, RW89, CL99].

A controller C is said to achieve the desired specification S, if it satisfies (4.1). The
specification S is said to be achievable, if there exists a controller that achieves it.
In the literature, the terms implement and implementability are often used instead of
achieve and achievable.

From the definition of full interconnection, it is clear that S is achievable if and
only if S ⊂ P . In fact, if S is achievable, it can be seen easily that C := S achieves
S.

4.1.2 Partial interconnection control problems

This variant of control problems involves behaviors of different types.

Problem 4.2. The plant P is a given behavior of type (TP ,WP), and the desired
specification S is a given behavior of type (TS ,WS). The candidate controllers are
of type (TC ,WC).Given two projections πc and πs that map P to behaviors of type
equal to that of C and S respectively, find a controller C of this type such that

πsπ
−1
c (πcP ‖ C) = S. (4.2)

Notice that if these two projections are the identity map, then the problem is
essentially reduced into a full interconnection problem discussed in the previous
subsection. A controller C is said to achieve the specification S if it solves the
problem.

Examples of control problem in this type are:

• Control of linear systems, where only a part of the variables are available as
control variables. This situation is depicted in Figure 4.1.

• Supervisory control of discrete event systems, where not all events are ob-
servable and controllable [RW89, CL99].

• Control of hybrid systems, where not all events or continuous variables are
available for interconnection.

Control problems of this type have been discussed in somewhat different rep-
resentation in, for example [SJ02, Sch03a]. There, the conditions for solving the
problem as well as a candidate solution, called the canonical controller, were pre-
sented.

Definition 4.3. Given a control problem as in (4.3). The first canonical controller

is defined as follows [WBJT03].

C′
can := {c ∈ πcP | πsπ

−1
c c ⊂ S}. (4.3)

72

4.1 Introduction

P C

�

U
control variables

to-be-controlled variables

Figure 4.1: A partial interconnection in a control problem.

The first canonical controller possesses an important property, stated in the fol-
lowing proposition.

Proposition 4.4. The controller C′
can achieves the maximal achievable behavior

contained in S.

Proof. From (4.3) we can readily conclude that

πsπ
−1
c (πcP ‖ C′

can) ⊂ S. (4.4)

To show that C′
can achieves the maximal achievable behavior in S, consider any

other controller C′ such that

πsπ
−1
c (πcP ‖ C′) ⊂ S. (4.5)

We shall show that (πcP ‖ C′) ⊂ (πcP ‖ C′
can). Take any c ∈ (πcP ‖ C′). Because

of (4.5), we know that πsπ
−1
c c ⊂ S. Therefore, by the construction in (4.3), c is also

contained in (πcP ‖ C′
can). It follows that the behavior achieved by C′ is contained

in that of C′
can.

Theorem 4.5. The specification S in (4.2) is achievable, if and only if C′
can achieves

S.

Proof. We only have to prove the only if part, since the converse is obvious. From
Proposition 4.4 we know that C′

can achieves the maximal achievable behavior con-
tained in S. This means that if S itself is achievable then C′

can achieves S.

Although the first canonical controller is powerful, its construction is defined as
a set-theoretical construct. To obtain a representation of this controller we need to
perform some computation. Later we shall introduce a weaker version of canoni-
cal controller, which can be constructed as an interconnection.

We define the homogeneity property as follows.

Definition 4.6. The plant P is said to satisfy the homogeneity property [SJ02] with
respect to the projections πs and πc, if for any (s1, c1) and (s2, c1) in πsP × πcP ,

(s1, c2) ∈ πsP × πcP ⇒ (s2, c2) ∈ πsP × πcP , ∀c2 ∈ πcP . (4.6)

73

4 Control as interconnection

Remark 4.7. In terms of observability, the homogeneity property can be also ex-
pressed as follows. The homogeneity property is satisfied if and only if πsπ

−1
c πc P

πcπ
−1
s πs. Both projections are defined to be acting on P .

Remark 4.8. Homogeneity can also be understood as follows. The behavior P

can be seen as a (graph of a) relation between W
TS

S and W
TC

C (see Figure 4.3). A
relation is called independent if its graph can be written as a Cartesian product of its
projections on the related domains. The behavior P has the homogeneity property
if it can be written as a union of independent relations.

The conditions for solvability of a control problem involving a plant with homo-
geneity property is given in the following theorem, which was proved in [SJ02].

Theorem 4.9. For a plant P satisfying the homogeneity property with respect to
πs and πc, the specification S as in (4.2) is achievable if and only if
(i) S ⊂ πsP , and
(ii) S = πsπ

−1
c πcπ

−1
s S.

Statement (ii) in the theorem above is equivalent to the following statement. For
any w,w′ ∈ P , if πcw = πcw

′, then the following biimplication holds.

πsw ∈ S ⇔ πsw
′ ∈ S. (4.7)

If the plant P does not have the homogeneity property, then conditions (i) and
(ii) in Theorem 4.9 are just sufficient for achievability of the specification S, and
not necessary.

We define the second canonical controller as follows1.

Definition 4.10. Given a control problem as in (4.3). The second canonical con-

troller is defined as follows [SJ02, Sch03a].

C′′
can := πcπ

−1
s (πsP ‖ S). (4.8)

Notice that in (4.8) the controller C′′
can is defined in terms of an interconnection.

To make the exposition clearer, the interconnection diagram is depicted in Figure
4.2. Notice that in the block diagram, the canonical controller C′′

can has a copy of
the plant. In set theoretic notation, the second canonical controller C′′

can is charac-
terized as follows.

C′′
can = {c ∈ W

TC

C | ∃w ∈ P such that πcw = c and πsw ∈ S}. (4.9)

A comparison between the first and second canonical controller and the behaviors
that they achieve is shown in Figure 4.3.

The second canonical controller has the following special property.

1In [SJ02, Sch03a] the second canonical controller is called canonical controller. The first canonical
controller is introduced later in [WBJT03].

74

4.1 Introduction

� �

��

������

Figure 4.2: The canonical controller C′′
can as an interconnection. C′′

can :=
πcπ

−1
s (πsP ‖ S).

�

�

��

���

������

�����

���

���

�

�

�

�

Figure 4.3: A comparison between the two canonical controllers. Here C′
can and

C′′
can denote the first and second canonical controller respectively. The

behaviors that they achieve are denoted by K′
can and K′′

can respectively.

75

4 Control as interconnection

Proposition 4.11. For a plant P satisfying the homogeneity property with respect
to πs and πc, the second canonical controller C′′

can achieves the minimal achievable
behavior containing (S ‖ πsP).

Proof. Denote K′′
can := πsπ

−1
c (πcP ‖ C′′

can). Since C′′
can ⊂ πcP ,

K′′
can = πsπ

−1
c (C′′

can),

= πsπ
−1
c πcπ

−1
s (πsP ‖ S),

⊃ (πsP ‖ S). (4.10)

Take any other controller C′ such that (πsP ‖ S) ⊂ πsπ
−1
c (πcP ‖ C′). Denote K′ :=

πsπ
−1
c (πcP ‖ C′). Take any s ∈ K′′

can. We shall prove that s ∈ K′. If s ∈ (πsP ‖ S)
then s ∈ K′ since (πsP ‖ S) ⊂ K′. If s /∈ (πsP ‖ S), then there exist w and w′ in
P such that πsw = s, πcw =: c ∈ C′′

can, πcw
′ = c, and πsw

′ =: s′ ∈ (πsP ‖ S).
We are going to show that s /∈ K′ is a contradiction. Suppose that it is true, then
πcπ

−1
s s ‖ C′ = ∅. But because of the homogeneity property, πcπ

−1
s s = πcπ

−1
s s′.

Hence πcπ
−1
s s′ ‖ C′ = ∅ and s′ /∈ K′, which is a contradiction since s′ ∈ (πsP ‖

S).

The following corollary, follows from Theorem 4.9 and Proposition 4.11.

Corollary 4.12. For a plant P satisfying the homogeneity property with respect to
πs and πc, S is achievable if and only if C′′

can achieves it.

Remark 4.13. Obviously, the stronger part of the corollary above is the ’only if’
part. If the plant P does not possess the homogeneity property, it can be that a
certain specification S can be achieved by the second canonical controller C′′

can.
However, generally we cannot guarantee that a specification is achievable only if
the C′′

can achieves it.

Stronger than this corollary, we can state the following proposition.

Proposition 4.14. For a plant P satisfying the homogeneity property with respect
to πs and πc, if S is achievable then C′

can = C′′
can.

Proof. (C′
can ⊆ C′′

can) Take any c ∈ C′
can. By Definition 4.3, πsπ

−1
c c ⊂ S. Notice that

since S is achievable, (4.8) can be written as

C′′
can = πcπ

−1
s S. (4.11)

This implies c ∈ C′′
can.

(C′
can ⊇ C′′

can) Take any c ∈ C′′
can. Since S is achievable, we know that C′′

can is
constructed based on (4.11). Moreover, we also have the following relation

S = πsπ
−1
c C′′

can. (4.12)

This implies πsπ
−1
c c ⊂ S, which means c ∈ C′

can.

76

4.1 Introduction

Notice that for control problems, in which the homogeneity property holds,
both canonical controllers are equivalent. However, the second controller is ex-
pressed in terms of interconnection of systems, as opposed to the first canonical
controller that is expressed as a set theoretical construct.

Requiring that the plant has the homogeneity property might seem restrictive,
but actually this requirement is satisfied by quite a large class of problems. The
following are examples of cases where the homogeneity property is satisfied.

1. All cases where P is a linear system and the projections are linear differential
(or difference) maps. To verify that this is the case, construct the following
set

{(s, c) | ∃w ∈ P such that πsw = s and πcw = c}.

The homogeneity property follows from the fact that this set is a linear space.

2. All supervisory control cases, where the set of controllable events coincides
with the observable ones2 and the specification is given in terms of the whole
alphabet. To verify that this is the case, notice that πs is the identity map.

For these cases we can readily apply Theorem 4.9. Consider the following corol-
lary for supervisory control of discrete event systems, where the set of controllable
events coincides with the observable ones.

Corollary 4.15. Let L be the generated language of a finite state automaton with
alphabet E. Let Z ⊂ E be the set of observable and controllable events. Define πz

to be the projection acting on L that eliminates the occurrence of events in E\Z .
There exists a supervisor language C such that the prefix-closed specification S is
achieved, i.e. π−1

z (πzL ‖ C) = S, if and only if
(i) S ⊂ L, and
(ii) S = π−1

z πzS.

This corollary is an application of Theorem 4.9, where L is the plant behavior
and πs is the identity map. Hereby we recover a known result in the area of su-
pervisory control of discrete event systems. Conditions (i) and (ii) are equivalent
to a property which, in other literature such as [CL99], is called normality of the
language S with respect to the projection associated to the set of events Z.

Remark 4.16. Ideas similar to the canonical controllers have also appeared in
other literatures, for example, [Sme87] and [Roc02].

The following result tells about achievability of the specification if the problem
is altered by changing the projection πc.

Proposition 4.17. Given a plant P satisfying the homogeneity property with re-
spect to πs and πc, and a specification S that is achievable. If πc is replaced with
any φc � πc such that the homogeneity property is still satisfied, then S is still
achievable.

2The terms observable and controllable refer to the usage in [CL99].

77

4 Control as interconnection

Proof. It is sufficient to show that condition (ii) in Theorem 4.9 remains satisfied,
even if πc is replaced with φc � πc. Notice that in general S ⊂ πsπ

−1
c πc π

−1
s S. So

it remains to prove that

(

S ⊃ πsπ
−1
c πcπ

−1
s S

)

⇒
(

S ⊃ πsφ
−1
c φcπ

−1
s S

)

. (4.13)

Since φc � πc implies φ−1
c φc ⊂ π−1

c πc, (4.13) is satisfied and hence S is still achiev-
able.

This result is actually very intuitive and it can be explained as follows. It has
been mentioned before that the partial ordering � is related to the amount infor-
mation retained by the projection. If a projection φc � πc, it means the projection
φc retains more information than the projection πc. The role of πc in the control
problem is to determine the extent, to which the controller can interact with the
plan. Replacing πc with φc means allowing higher amount of information to be
used in the interconnection between the plant and the controller, and hence mak-
ing it easier to achieve the desired specification. We can think of it as using a larger
interaction channel between the plant and the controller. This interpretation is ev-
ident, for example, in the following cases.

1. For control problems of linear systems, the projection πc typically takes the
form of projecting the behavior to a set of control variables c [Wil97, Bel03].
Replacing πc with φc, where φc � πc, can mean using a larger set of control
variables. Obviously if the control problem is solvable with the smaller set
of control variables, it is also solvable using the bigger one.

2. For supervisory control problems of discrete event systems, where the set
of controllable events coincides with the observable ones, the projection πc

typically denotes the projection of the language of the plant to the set of
controllable-observable events. Replacing πc with φc, where φc � πc, can
mean allowing more events to be controllable and observable. Obviously if
the control problem is solvable with the smaller set of controllable-observable
events, it is also solvable using the bigger one [RW89, CL99].

3. For control of hybrid behavioral automata, replacing πc with φc, where φc �
πc, can mean allowing more events to be controllable and observable and/or
more continuous variables to be used as control variables. Again, we can see
that this actually makes the control problem easier to solve.

We have seen that the bigger πc is, the easier it is to solve the control problem.
Based on this fact, we can identify an interesting research problem. Instead of
replacing πc with something bigger, we replace it with something smaller. Obvi-
ously this will affect the solvability of the control problem in a negative way. The
problem is then to find out to extent to which πc can be reduced while retaining
the solvability of the control problem. This problem is called control with minimal
interaction, a version of which we shall discuss later in this chapter.

78

4.1 Introduction

4.1.3 Control problems with a tolerance gap

In both variants of control problems that we have seen above, the goal of the con-
trol problem is to achieve a given specification S. In this subsection, we shall con-
sider the variant where the requirement is relaxed, by requiring that the controlled
behavior lies between two specification bounds, Sr and Sa. The idea is that Sr

is the minimal required behavior and that Sa is the maximal allowed behavior
[CL99]. To avoid ill-posed problems, it is always assumed that Sr ⊂ Sa.

When such a tolerance gap is present, the full interconnection control problem
discussed in Subsection 4.1.1 becomes

Problem 4.18. Given the plant P and two specification limits Sr and Sa, find a
controller C such that

Sr ⊂ (P ‖ C) ⊂ Sa. (4.14)

The following theorem states the conditions for solvability (i.e. existence of a
solution for C) of such problem. A proof is not included since it is trivial.

Theorem 4.19. The control problem associated with (4.14) is solvable if and only
if Sr ⊂ P .

The problem becomes more interesting when some projections are involved.

Problem 4.20. Given a plant P of type (TP ,WP), and two specification limits Sr

and Sa of type (TS ,WS). The candidate controllers are of type (TC ,WC). Find a
controller C of this type such that

Sr ⊂ πsπ
−1
c (πcP ‖ C) ⊂ Sa. (4.15)

The projections πc and πs are also given. They map P to behaviors of type equal
to that of C and S respectively.

As is the case with the discussion in the previous subsection, we utilize the idea
of canonical controller to solve this problem. The analog of the first canonical
controller defined in Definition 4.3, for solving Problem 4.20 is defined as follows.

C′
can = {c ∈ πcP | πsπ

−1
c c ⊂ Sa}. (4.16)

This canonical controller also possesses the property analogous to the one de-
scribed in Theorem 4.5.

Theorem 4.21. Problem 4.20 is solvable, if and only if C′
can, which is constructed

according to (4.16), solves it.

Proof. We only need to prove the ”only if”part. We use Proposition 4.4 to establish
that C′

can achieves the maximal achievable behavior in Sa. Suppose that C′
can does

not solve the problem, then

Sr 6⊂ πsπ
−1
c (πcP ‖ C′

can). (4.17)

Since C′
can achieves the maximal achievable behavior in Sa, (4.17) implies that the

problem is not solvable.

79

4 Control as interconnection

If the plant P possesses the homogeneity property with respect to πc and πs

(see previous subsection), we again construct the second canonical controller, in a
way analog to the construction in the previous subsection, as follows.

C′′
can = πcπ

−1
s (πsP ‖ Sr). (4.18)

Theorem 4.22. For a plant P satisfying the homogeneity property with respect to
πs and πc, all the following statements are equivalent.
(i) Problem 4.20 is solvable.
(ii) Sr ⊂ πsP , and Sa ⊃ πsπ

−1
c πcπ

−1
s Sr.

(iii) The second canonical controller C′′
can solves the control problem.

Proof. (i)⇒(ii) Since all achievable behaviors must be contained in πsP , necessarily
Sr ⊂ πsP . The second canonical controller is then (see (4.18)) C′′

can = πcπ
−1
s Sr. Sup-

pose that Sa 6⊃ πsπ
−1
c πcπ

−1
s Sr. We are going to show that this is a contradiction.

The behavior achieved by the second canonical controller is K′′
can := πsπ

−1
c (πcP ‖

πcπ
−1
s Sr). Since Sr ⊂ πsP , we also have that πcπ

−1
s Sr ⊂ πcP . Hence

K′′
can = πsπ

−1
c πcπ

−1
s Sr 6⊂ Sa. (4.19)

From Proposition 4.11, and since Sr ⊂ πsP , we know that K′′
can is the minimal

achievable behavior containing Sr. Therefore (4.19) implies that the control prob-
lem is not solvable.

(ii)⇒(iii) From the previous paragraph, it follows that if (ii) is satisfied then
Sr ⊂ K′′

can ⊂ Sa.
(iii)⇒(i) Trivial.

An example of control problems of this type can be obtained, for example by
replacing the control problem in Corollary 4.15 with the version with a tolerance
gap. In this case, Sr is present to make sure that the supervised language possess
some ”liveliness”property, and Sa is to prevent some undesirable executions to
take place (for example, for safety reasons).

4.2 Compatibility constraint

4.2.1 Constraint formulation

In the previous section we have discussed control problems in the behavioral set-
ting without any constraints. That is, we consider the problem of finding any con-
troller that when interconnected with the plant in a certain way (which is defined
by the projection πc) yields some desirable behavior. In the remaining part of this
chapter we shall discuss constrained control problems. By constrained we mean
that the controller not only solves the control problem as defined in the previous
section, but also satisfies some additional requirements.

The constraint that we are going to discuss in this section is compatibility be-
tween the plant and the controller. The nature of the compatibility issues can be
explained as follows.

80

4.2 Compatibility constraint

Take any two dynamical systems Σ1 and Σ2, whose behaviors are B1 and B2

respectively. Recall that by definition, the behavior resulting from the intercon-
nection B1 ‖ B2 is B1 ∩ B2. This means the trajectories that are accepted in the
interconnection obey the laws of both systems at all time. For physical systems,
this can be regarded as an approximation, for the following reason. If both sys-
tems already exist before the interconnection, the interconnection must be realized
at a particular time instant, say t ∈ T. The consequences are:

1. The trajectories of the interconnected systems only have to obey the laws of
Σ1 and Σ2 simultaneously after time t.

2. It is possible that a certain trajectory w of Σ1 (or Σ2) cannot continue its
evolution after time t.

Consider the following example.

Example 4.23. An oscillating point mass is modelled with a behavior B1 ∈ L1
c

given by

B1 =

{

w ∈ C
∞(R,R) |

d2w

dt2
+ w = 0

}

. (4.20)

The point mass is isolated, which means that there is no external force influencing
the point mass. Now, consider another behavior

B2 = {w ∈ C
∞(R,R) | w = 0} . (4.21)

Suppose that the interconnection is formed at time t = 0. It can be verified that the
only trajectory that satisfies the laws of both systems is the zero trajectory. This
results in a conflict in B1 because only the zero trajectory is allowed after time
t = 0, while prior to that time, the isolated point mass can be oscillating.

Let G = (G,+, <) be the underlying totally ordered commutative group of the
time axis T. Recall Lemma 2.8 that says that for any τ1, τ2 ∈ G, the set {t ∈ G | t >
τ1} and {t ∈ G | t > τ2} are isomorphic. We introduce the following time axis

T
+ := {t ∈ G | t > 0} (4.22)

as a representation for all such left-open-right-unbounded time intervals.
The fact that the interconnection is formed at a certain time can be modelled as

a partial interconnection.

Definition 4.24. Given a behavior B of type (T,W). The projection that gives the
future behavior of B after time τ ∈ T, is denoted as πτ , and defined as

πτ : B → W
T
+

, (4.23)

[πτ (w)] (t) := w(t − τ), ∀w ∈ B, t ∈ T
+. (4.24)

Thus the projection maps B to a behavior of type (T+,W).

81

4 Control as interconnection

�

�

�

�

�

�

�

�

�

�

�

Figure 4.4: An illustration of directability. The trajectory w1 is directable to w2 at
time t if w3 (thick curve) is also an element of the behavior.

The future interconnection of B1 and B2, both of type (T,W), can be written as

B = πτ1
B1 ‖ πτ2

B2. (4.25)

Here we accommodate the possibility of different time instants of interconnection
of the two systems, namely τ1 and τ2. The reason is the fact that possibly there is
no synchronicity in the timing of both systems. Thus, before the interconnection
the time in both systems may run independently.

Before we can define compatibility, we need the following definition.

Definition 4.25. Given a dynamical system Σ = (T,W,B). Let w1, w2 ∈ B and
t ∈ T. We say that w1 is directable to w2 at time t if w3 := (w1 ∧t

t w2) is an element
of B. Notice that if Σ admits a canonical minimal state map φ, then w1 is directable
to w2 if and only if φ(w1, t) = φ(w2, t).

The fact that w1 is directable to w2 at time t is written as w1DB(t)w2. Thus, the
directability relation is represented by the symbol DB(t). See Figure 4.4 for an
illustration of directability.

In the following we shall discuss how past and future induced state maps are
related with directability.

Proposition 4.26. Let a behavior B be of type (T,W). Let α and ω be any past
induced and future induced state maps respectively. The symbols ᾱt and ω̄t are
defined as follows.

ᾱt(w) := {w′ ∈ B | α(w′, t) = α(w, t)}, (4.26)

ω̄t(w) := {w′ ∈ B | ω(w′, t) = ω(w, t)}, (4.27)

for all w ∈ B. The following relation holds for all w1, w2 ∈ B and t ∈ T.

(w1DB(t)w2) ⇔ ᾱt(w1) ∩ ω̄t(w2) 6= ∅. (4.28)

82

4.2 Compatibility constraint

Proof. (⇒)Let wi− and wi+ denote the past and future of wi, i = 1, 2. That is,
wi− ∈ B|(−∞,t] and wi+ ∈ B|(t,∞), if T = R. Denote w3 := w1 ∧t

t w2. The past of
w3 is w1− and its future is w2+. Consequently we have that

w3 ∈ ᾱt(w1), (4.29a)

w3 ∈ ω̄t(w2). (4.29b)

Hence ᾱt(w1) ∩ ω̄t(w2) 6= ∅.
(⇐) Assume that ᾱt(w1) ∩ ω̄t(w2) 6= ∅. Take an element from this set and call it

w3. We know from the state property that

w4 := (w1 ∧
t
t w3) ∈ B.

Since the future of w4 is the same as that of w3, necessarily ω(w4, t) = ω(w3, t) =
ω(w2, t). Hence we can construct w5 such that

w5 := (w4 ∧
t
t w2) ∈ B.

Notice that w5 has the past of w1 and the future of w2. Hence

w5 = (w1 ∧
t
t w2) ∈ B.

Notice that we do not require w1, · · · , w5 to be distinct.

Corollary 4.27. Let a behavior B be of type (T,W). Let α and ω be any past in-
duced and future induced state maps respectively. The following relation holds

(w1DB(t)w2) ⇔ w2 ∈ (ω̄t ◦ ᾱt) (w1), (4.30)

⇔ w1 ∈ (ᾱt ◦ ω̄t)(w2). (4.31)

Motivated by this corollary, we introduce the set valued mapsDB,t(·) andD−1
B,t(·)

as

DB,t(·) := (ω̄t ◦ ᾱt) (·), (4.32a)

D−1
B,t(·) := (ᾱt ◦ ω̄t)(·). (4.32b)

We can define compatibility as follows.

Definition 4.28. Let B1 and B2 be behaviors of type (T,W). The interconnection
B1 ‖ B2 is compatible if there exist τ1, τ2 ∈ T such that for any wi ∈ Bi, i = 1, 2,
there exists a w̃i ∈ π−1

τi
(πτ1

B1 ‖ πτ2
B2), i = 1, 2, such that

(i) wiDBi
(τi)w̃i, i = 1, 2, and

(ii) πτ1
w̃1 = πτ2

w̃2 (see Definition 4.24)

The meaning of this definition is that in a compatible interconnection, any pair
of trajectories from the individual systems is directable to a trajectory accepted by
the interconnection at the time the interconnection is formed.

83

4 Control as interconnection

Lemma 4.29. Let B1 and B2 be behaviors of type (T,W). The interconnection
B1 ‖ B2 is compatible if and only if there exist t1, t2 ∈ T such that

DB2,t2

(

π−1
t2

((πt1DB1,t1(w1)) ∩ B)
)

= B2, ∀w1 ∈ B1, (4.33)

DB1,t1

(

π−1
t1

((πt2DB2,t2(w2)) ∩ B)
)

= B1, ∀w2 ∈ B2, (4.34)

where B := πt1B1 ‖ πt2B2.

The statement in the lemma above might look cumbersome, but is merely a
rewriting of Definition 4.28.

We can strengthen the definition of compatibility by requiring that the intercon-
nection can be made at any time. Formally, we define it as follows.

Definition 4.30. Let B1 and B2 be behaviors of type (T,W). The interconnection
B1 ‖ B2 is uniformly compatible if for any τi ∈ T and wi ∈ Bi, i = 1, 2, there
exists a w̃i ∈ π−1

τi
(πτ1

B1 ‖ πτ2
B2), i = 1, 2, such that

(i) wiDBi
(τi)w̃i, i = 1, 2, and

(ii) πτ1
w̃1 = πτ2

w̃2.

We can formulate the following result, as an analog of Lemma 4.29.

Lemma 4.31. Let B1 and B2 be behaviors of type (T,W). The interconnection
B1 ‖ B2 is uniformly compatible if and only if for any t1, t2 ∈ T, the following
holds.

DB2,t2

(

π−1
t2

((πt1DB1,t1(w1)) ∩ B)
)

= B2, ∀w1 ∈ B1, (4.35)

DB1,t1

(

π−1
t1

((πt2DB2,t2(w2)) ∩ B)
)

= B1, ∀w2 ∈ B2, (4.36)

where B := πt1B1 ‖ πt2B2.

Suppose that B1 and B2 each admit a canonical minimal state map φ1 and φ2.
The condition in Lemma 4.31 is then equivalent to the fact that of the state maps
are independent. Before we can precisely define this statement, we need the fol-
lowing definition.

Definition 4.32. Given a behavior B of type (T,W). The suffix behavior of B,
denoted as Bω is defined as

Bω :=
⋃

t∈T

πtB. (4.37)

The suffix behavior thus contains all possible suffices of trajectories in B. The
suffices might be obtained by chopping the trajectories at different time instants.
However, since they are all trajectories of the same type, we can group them to-
gether.

The canonical minimal state map of a behavior is future-induced. This has been
established in Corollary 3.42. As a consequence, the canonical minimal state map
φ of a behavior B (if exists) can be considered as a map acting on Bω. This is done

84

4.2 Compatibility constraint

as follows. Take any w ∈ Bω . We know from definition that there exist w̃ ∈ B and
t ∈ T such that w = πtw̃. We then define

φ(w) := φ(w̃, t). (4.38)

Now, the statement about the independence of the canonical minimal state maps
in a uniformly compatible interconnection can be formally expressed as follows.

Theorem 4.33. Let B1 and B2 be behaviors of type (T,W). Suppose that B1 and
B2 each admit a canonical minimal state map φ1 and φ2. Denote the state space of
the respective state maps as Φ1 and Φ2. The interconnection B1 ‖ B2 is uniformly
compatible if and only if the following holds. For any x1 ∈ Φ1 and x2 ∈ Φ2, there
exists a w ∈ B1ω ∩ B2ω such that

φ1(w) = x1, (4.39)

φ2(w) = x2. (4.40)

Proof. (if) We need to prove that for any τi ∈ T and wi ∈ Bi, i = 1, 2, there exists a
w̃i ∈ π−1

τi
(πτ1

B1 ‖ πτ2
B2), i = 1, 2, such that

(i) wiDBi
(τi)w̃i, i = 1, 2, and

(ii) πτ1
w̃1 = πτ2

w̃2.
Denote xi := φi(wi, ti), i = 1, 2. Take w ∈ B1ω ∩ B2ω such that (4.39-4.40) are
satisfied. We construct w̃1 and w̃2 by replacing the future of w1 and w2 at time τ1
and τ2 with w.

(only if) Suppose that there exist x1 ∈ Φ1 and x2 ∈ Φ2 such that there does not
exists a w ∈ B1ω ∩B2ω such that (4.39-4.40) are satisfied. We know that there exist
τi ∈ T and wi ∈ Bi, i = 1, 2, such that φi(wi, τi) = xi, i = 1, 2. By the property of
the canonical minimal state map, we cannot construct w̃i ∈ π−1

τi
(πτ1

B1 ‖ πτ2
B2),

i = 1, 2, such that
(i) wiDBi

(τi)w̃i, i = 1, 2, and
(ii) πτ1

w̃1 = πτ2
w̃2.

Thus the interconnection cannot be uniformly compatible.

Now we are going to discuss a more general kind of compatibility. Notice that
compatibility requires that the interconnection can be made instantaneously, with-
out any kind of preparation. A more general criterion would allow some prepa-
ration stage to take place prior to the interconnection, and thus accommodating
more interconnections.

Definition 4.34. Let w1, w2 ∈ B and τ ∈ T. We say that w1 is weakly directable to
w2 at time t if there exists a trajectory w3 ∈ B and a t′ ≤ t such that

w3(τ) =

{

w1(t), τ ≤ t′,
w2(t) τ > t.

Similar to the case of (strong) directability, we shall use a shorthand notation for
weak directability. The fact that w1 is weakly directable to w2 at time t can be written

85

4 Control as interconnection

�

�

�

�

�

�

�

�

�

�
�

��

Figure 4.5: An illustration of weak directability. The trajectory w1 is weakly di-
rectable to w2 at time t if there exists a trajectory w3 (thick curve) that
has the past of w1 and the future of w2 possibly with a transitional
phase as indicated in the picture.

as w1D
∗
B

(t)w2. It is interesting to realize that the time indicated in the relation is
such that for any t′ ≥ t,

w1D
∗
B

(t)w2 ⇒ w1D
∗
B

(t′)w2.

See Figure 4.5 for an illustration of weak directability.

The concept of weak directability is related to controllability of the behavior.

Definition 4.35. Let a behavior B have the type (T,W). The behavior is control-

lable if there exists a time instant T ∈ T such that for everyw1, w2 ∈ B, there exists
a t ≤ T such that w1D

∗
B

(t)w2. Here T acts as a time upper bound, before which all
directing must be done.

The definition of weak directability leads to the definition of weak compatibility.

Definition 4.36. Let B1 and B2 be behaviors of type (T,W). The interconnection
B1 ‖ B2 is weakly compatible if there exist τ1, τ2 ∈ T such that for any wi ∈ Bi,
i = 1, 2, there exists a w̃i ∈ π−1

τi
(πτ1

B1 ‖ πτ2
B2), i = 1, 2, such that

(i) wiD
∗
Bi

(τi)w̃i, i = 1, 2, and
(ii) πτ1

w̃1 = πτ2
w̃2.

This definition can be interpreted as follows. If the interconnection B1 ‖ B2 is
weakly compatible, then for any trajectories in B1 and B2, i.e. w1 and w2, we can
always gradually direct w1 and w2 to a future that is accepted by the interconnec-
tion. This definition of weak compatibility is similar to the concept of mergeable
behaviors introduced in [RW01] for LTI behaviors.

A relation between controllability and weak compatibility is presented as fol-
lows.

86

4.2 Compatibility constraint

Theorem 4.37. Let B1 and B2 be behaviors of type (T,W). Assume that these
behaviors are not disjoint. If B1 and B2 are both controllable, then the intercon-
nection B1 ‖ B2 is weakly compatible.

Proof. For any w1 ∈ B1 and w2 ∈ B2, we pick any w ∈ B1 ‖ B2. Because of
controllability of B1 and B2, there exist a T1, T2 ∈ T such that w1D

∗
B1

(T1)w and
w2D

∗
B2

(T2)w. Here w plays the role of w̃1 and w̃2 in Definition 4.36. Notice that by
Definition 4.35, T1 and T2 can be chosen independently of w1 and w2.

As the analog of uniform compatibility, we can define uniform weak compati-
bility as follows.

Definition 4.38. Let B1 and B2 be behaviors of type (T,W). The interconnection
B1 ‖ B2 is uniformly weakly compatible if for any τi ∈ T and wi ∈ Bi, i = 1, 2,
there exists a w̃i ∈ π−1

τi
(πτ1

B1 ‖ πτ2
B2), i = 1, 2, such that

(i) wiD
∗
Bi

(τi)w̃i, i = 1, 2, and
(ii) πτ1

w̃1 = πτ2
w̃2.

Remark 4.39. The notions of compatible and weakly compatible interconnections
are built upon the following perception. There are two systems and they are going
to be interconnected. By this statement we mean that the interconnection starts to
take effect after a particular time instant t which is an element of the time axis. As
an alternative to this perception, one can also think of the interconnected systems
as something that exists since the beginning of the time axis. In this alternative
point of view, compatibility is not an issue.

4.2.2 Compatibility for linear systems

We shall now discuss the concept of uniformly compatible interconnection for the
class of linear time invariant systems. We shall exclude the class L̄

q
c from the dis-

cussion, as we need to use the concept of dynamic maps. Thus, we restrict our

attention to the classes L
q
d, L

q
c and

−→
L

q
c .

Behaviors in L
q
c admit canonical minimal state map, namely value of its tra-

jectory together with all its derivatives (see Theorem 3.45). Because of this, the
canonical minimal state maps of two behaviors defined over the same set of vari-
ables can never be independent. Thus, the interconnection of two L

q
c behaviors is

never uniformly compatible, except when both behaviors are the zero behavior. In
this case, the state space consists of one point, namely 0.

Behaviors in
−→
L

q
c and L

q
d also admit canonical minimal state map, namely the

observable state space representation (see Theorems 3.46 and 3.47). Thus, if we

take any B1 and B2 both in
−→
L

q
c or L

q
d, and form the interconnection B := B1 ‖ B2,

Theorem 4.33 stipulates that this interconnection is uniformly compatible if and
only if the canonical minimal state maps of B1 and B2 are independent. The
following result gives a characterization of uniformly compatible interconnection.

87

4 Control as interconnection

Theorem 4.40. For any B1,B2 ∈
−→
L

q
c , the interconnection B := B1 ‖ B2 is uni-

formly compatible if and only if

n(B) = n(B1) + n(B2). (4.41)

Here the symbol n() denotes the McMillan degree of the behavior.

Proof. Denote x1 and x2 as the canonical minimal state maps of B1 and B2 respec-
tively. In Theorem 3.46 it is shown that x1 and x2 can be constructed as

x1 = X1

(

d

dt

)

w, (4.42)

x2 = X2

(

d

dt

)

w, (4.43)

for some full row rank polynomial matrices X1 and X2. The number of rows in
X1 and X2 are n(B1) and n(B2) respectively.

Notice that because of time invariance, we have the following relation for the
suffix behaviors

B1ω = {w|t>0 | w ∈ B1}, (4.44)

B2ω = {w|t>0 | w ∈ B2}, (4.45)

B1ω ∩ B2ω = {w|t>0 | w ∈ B1 ∩ B2}. (4.46)

Following Theorem 3.49, the canonical minimal state map of B can be con-
structed as

x =

[

X1

(

d
dt

)

X2

(

d
dt

)

]

w. (4.47)

We need to prove that x1 and x2 are independent if and only if n(B) = n(B1) +
n(B2).

(only if) Suppose that the interconnection is uniformly compatible. From Theo-
rem 4.33, we know that this implies that for any x1 ∈ R

n(B1) and x2 ∈ R
n(B2) we

can find a w ∈ B1ω ∩ B2ω such that

lim
t↓0

X1

(

d

dt

)

w(t) = x1, (4.48a)

lim
t↓0

X2

(

d

dt

)

w(t) = x2. (4.48b)

On the other hand, since the canonical minimal state map of B is defined as in
(4.47), this implies that the state space of B1 ∩ B2 spans the whole Rn(B1)+n(B2).
Hence n(B) = n(B1) + n(B2).

(if) Suppose that n(B) = n(B1) + n(B2). This implies that for any x1 ∈ Rn(B1)

and x2 ∈ Rn(B2) we can find a w ∈ B1ω ∩ B2ω such that (4.48) is satisfied. There-
fore, according to Theorem 4.33, the interconnection is uniformly compatible.

88

4.2 Compatibility constraint

The analog of Theorem 4.40 for behaviors in L
q
d is as follows.

Theorem 4.41. For any B1,B2 ∈ L
q
d, the interconnection B := B1 ‖ B2 is uni-

formly compatible if and only if

n(B) = n(B1) + n(B2). (4.49)

Here the symbol n() denotes the McMillan degree of the behavior.

Proof. Denote x1 and x2 as the canonical minimal state maps of B1 and B2 respec-
tively. In Theorem 3.47 it is shown that x1 and x2 can be constructed as

x1 = X1 (σ)w, (4.50)

x2 = X2 (σ)w, (4.51)

for some full row rank polynomial matrices X1 and X2. The number of rows in
X1 and X2 are n(B1) and n(B2) respectively.

Notice that because of time invariance, we have the following relation for the
suffix behaviors

B1ω = {w|t>0 | w ∈ B1}, (4.52)

B2ω = {w|t>0 | w ∈ B2}, (4.53)

B1ω ∩ B2ω = {w|t>0 | w ∈ B1 ∩ B2}. (4.54)

Following Theorem 3.49, the canonical minimal state map of B can be con-
structed as

x =

[

X1 (σ)
X2 (σ)

]

w. (4.55)

We need to prove that x1 and x2 are independent if and only if n(B) = n(B1) +
n(B2).

(only if) Suppose that the interconnection is uniformly compatible. From Theo-
rem 4.33, we know that this implies that for any x1 ∈ Rn(B1) and x2 ∈ Rn(B2) we
can find a w ∈ B1 ∩ B2 such that

X1 (σ)w(k)|k=0 = x1, (4.56a)

X2 (σ)w(k)|k=0 = x2. (4.56b)

On the other hand, since the canonical minimal state map of B is defined as in
(4.55), this implies that the state space of B1 ∩ B2 spans the whole Rn(B1)+n(B2).
Hence n(B) = n(B1) + n(B2).

(if) Suppose that n(B) = n(B1) + n(B2). This implies that for any x1 ∈ Rn(B1)

and x2 ∈ Rn(B2) we can find a w ∈ B1 ∩B2 such that (4.56) is satisfied. Therefore,
according to Theorem 4.33, the interconnection is uniformly compatible.

Theorems 4.40 and 4.41 provide us a characterization of uniformly compatible

interconnection for behaviors in
−→
L

q
c and L

q
d.

89

4 Control as interconnection

The type of interconnections characterized by the fact that the McMillan degree
of the systems add up to McMillan degree of the interconnected system is known
as regular feedback interconnection [Wil97]. This type of interconnections is related
to some input-output partitioning of the variables.

Definition 4.42. [Wil97] Let B ∈
−→
L

q
c , such that it is given by the following repre-

sentation

B =

{

w | R

(

d

dt

)

w = 0

}

. (4.57)

Suppose that we reorder and partition the variables in w into u and y such that

B =

{

(u, y) | R1

(

d

dt

)

u+R2

(

d

dt

)

y = 0

}

, (4.58)

where [R1 R2] is a full row rank matrix. This partition is called a proper input-

output partition, where u is the input and y is the output if
(i) R2(ξ) is a square matrix with nonzero determinant,
(ii)R−1

2 (ξ)R1(ξ) is a proper rational matrix, i.e. its entries are proper rational func-
tions.
The rational matrix R−1

2 (ξ)R1(ξ) is called the transfer matrix of the input-output
partition.

The characterization of regular feedback interconnection in terms of the proper
input-output partition is given as follows.

Theorem 4.43. [Wil97] Let B1,B2 be elements of
−→
L

q
c . If the interconnection B :=

B1 ‖ B2 is a regular feedback interconnection then the variables in the behaviors
can be partitioned into u, y1, and y2 such that
(i) in B1, u and y2 are input, y1 is output and the transfer function is proper,
(ii) in B2, u and y1 are input, y2 is output and the transfer function is proper,
(iii) in B, u is input, y1 and y2 are output and the transfer function is proper.

This theorem shows that a regular feedback interconnection can be seen as a
standard feedback interconnection of input-output systems. This is evident if we
look at the diagram in Figure 4.6.

Controllability of linear time invariant systems is a very well known concept,
originating from the work of Kalman in the 1960s. The original definition of con-
trollability was cast in the state space representation, where a system is control-
lable if it is possible to go from any state to any other state in a finite time. Con-
trollability of linear time invariant systems is recast in the behavioral framework
by Willems in e.g. [Wil97, PW98].

Definition 4.44. (cf. Definition 5.2.2 in [PW98]) Let B be a behavior of a time
invariant dynamical systems. The system is called controllable if for any two tra-
jectories w1, w2 ∈ B there exists a t1 ≥ 0 and a trajectory w ∈ B such that

w(t) =

{

w1(t) t ≤ 0
w2(t) t > t1

. (4.59)

90

4.2 Compatibility constraint

�
�

�
�

�

� �
�

�

Figure 4.6: Regular feedback interconnection.

For LTI systems, Definition 4.35 and Definition 4.44 are equivalent.
Linear time invariant behaviors have a special property that to every behavior

B we can uniquely associate a behavior Bctr, which is the largest subbehavior of
B that is controllable [PW98]. This subbehavior is called the controllable part of B.
Since Bctr is a linear subspace of B, we can write

B = B
ctr ⊕ B

aut, (4.60)

for some Baut. Notice that although for every LTI behavior B, its controllable part
Bctr is uniquely defined, the subbehavior Baut is not unique.

Theorem 4.37 gives us a sufficient condition for weak compatibility. As its con-
sequence, we know that interconnection of controllable linear time invariant be-
haviors is always weakly compatible. Stronger yet, it is also uniformly weakly
compatible, because of time invariance.

A necessary and sufficient condition for uniform weak compatibility for linear

time invariant systems, i.e. L
q
c , L

q
c , L̄

q
c , and

−→
L

q
c , is given in the following theorem.

Theorem 4.45. Let B1 and B2 be LTI behaviors. The interconnection B1 ‖ B2 is
uniformly weakly compatible if and only if

B1 + B2 = B
ctr
1 + B

ctr
2 , (4.61)

where Bctr
i is the controllable part of Bi, for i = 1, 2.

Proof. (only if) Take any w1 and w2 in B1 and B2 respectively. Define the set
valued mapping ϕi : Bi → 2Bi , i = 1, 2, as

ϕi(w) := {w′ ∈ Bi | ∀t ∈ R, wD∗
Bi

(t)w′}.

It is known (see [PW98]) that

ϕi(wi) = wi + B
ctr
i , i = 1, 2.

91

4 Control as interconnection

If the interconnection is uniformly weakly compatible, then for any w1 and w2 in
B1 and B2 respectively, the following relation holds.

ϕ1(w1) ∩ ϕ2(w2) = (w1 + B
ctr
1) ∩ (w2 + B

ctr
2) 6= ∅. (4.62)

By taking w1 = 0 and w2 = 0 respectively, we can deduce that

B1 = B
ctr
1 + B

ctr
2 , (4.63a)

B2 = B
ctr
1 + B

ctr
2 . (4.63b)

Equation (4.61) follows straightforward from here.
(if) Assuming that (4.61) is true, we get (4.63). Consequently, we have that for

any w1 and w2 in B1 and B2 respectively, we can write

w1 = w11 + w12,

w2 = w21 + w22,

where w11, w21 ∈ Bctr
1 and w12, w22 ∈ Bctr

2 . To prove that the interconnection is
uniformly weakly compatible, we need to show that (4.62) holds. Define w :=
w21 + w12. Obviously we have that w ∈ (wi + B

ctr
i), i = 1, 2. Hence, (4.62) holds

and the interconnection is uniformly weakly compatible.

We relax the condition in Definition 4.42 to define input-output partition.

Definition 4.46. Let B be a linear time invariant behavior given by the following
representation

B = {w | R(σ)w = 0}, (4.64)

if B is discrete time or

B = {w | R(
d

dt
)w = 0}, (4.65)

if B is continuous time. Suppose that we reorder and partition the variables in w

into u and y such that

B = {(u, y) | R1(σ)u +R2(σ)y = 0}, (4.66)

or

B = {(u, y) | R1

(

d

dt

)

u+R2

(

d

dt

)

y = 0},

where [R1 R2] is a full row rank matrix. This partition is called an input-output

partition, where u is the input and y is the output if R2(ξ) is a square matrix with
nonzero determinant.

Clearly, any proper input-output partition is also an input-output partition. The
difference is that we do not require the transfer matrix from the input to the output
to be proper. The number of output variables in an LTI behavior is equal to the
number of rows in its minimal kernel representation. The number of output vari-
ables in an LTI behavior B is denoted as p(B). The notion of regular interconnection
is then defined as follows [Wil97, BT02].

92

4.2 Compatibility constraint

Definition 4.47. [Wil97] Let B1,B2 be linear time invariant behaviors of the same
type. The interconnection B := B1 ‖ B2 is a regular interconnection if

p(B) = p(B1) + p(B2). (4.67)

We can formulate a Theorem analogous to the characterization of regular feed-
back interconnection in Theorem 4.43.

Theorem 4.48. Let B1,B2 be linear time invariant behaviors of the same type. If
the interconnection B := B1 ‖ B2 is a regular interconnection, then the variables
in the behaviors can be partitioned into u, y1, and y2 such that
(i) in B1, u and y2 are input, y1 is output,
(ii) in B2, u and y1 are input, y2 is output,
(iii) in B, u is input, y1 and y2 are output.

It turns out that uniform weak compatibility is a weaker notion than regularity
of the interconnection. This result is presented in the following lemma.

Lemma 4.49. Let B1 and B2 be L
q
c behaviors defined by

Bi :=

{

w ∈ C
∞(R,Rw) | Ri

(

d

dt

)

w = 0

}

, i = 1, 2,

where R1 and R2 are full-row-rank polynomial matrices with g1 and g2 rows re-
spectively and q columns. The interconnection B1 ‖ B2 is uniformly weakly com-
patible if it is regular. The converse is generally not true.

Proof. Assume that the interconnection is regular. We shall use Theorem 4.45 to
prove that it is also uniformly weakly compatible. The behavior B1 ‖ B2 contains
all w ∈ C∞(R,Rw) characterized by

[

R1

R2

] (

d

dt

)

w = 0. (4.68)

We assume that at least one of B1 and B2 is uncontrollable. Otherwise the in-
terconnection is uniformly weakly compatible by directly applying Theorem 4.45.
Without any loss of generality, assume that B1 is uncontrollable. We can always
find two unimodular matrices U1 and V such that U1R1V is diagonal.

U1R1V =: R̃1 =

[

I 0 0
0 D(ξ) 0

]

, (4.69)

with I the identity matrix and D(ξ) some diagonal polynomial matrix. Denote

R̃2 := R2V. The interconnected behavior is given by the following kernel repre-
sentation.





I 0 0
0 D 0

R̃21 R̃22 R̃23





(

d

dt

)

w̃ = 0, (4.70)

93

4 Control as interconnection

where

w̃ := V −1

(

d

dt

)

w. (4.71)

Notice that since the interconnection is regular, R̃23 is full row rank.
In the following, we shall show that B1 = Bctr

1 + Bctr
2 . Take any trajectory

w̃ := (w̃1, w̃2, w̃3) ∈ B1. Here the variables in w̃ are partitioned according to
the columns of the polynomial matrix in (4.70). Necessarily, w̃1 = 0 and w̃2 ∈

kerD
(

d
dt

)

. Now, since R̃23 is full row rank, there exists a ṽ3 such that

R̃22

(

d

dt

)

w̃2 = R̃23

(

d

dt

)

ṽ3,

and ṽ := (0, w̃2, ṽ3) ∈ Bctr
2 . Also notice that w̃ − ṽ = (0, 0, w̃3 − ṽ3) ∈ Bctr

1 . There-
fore, we have shown that

B1 = B
ctr
1 + B

ctr
2 . (4.72)

If B2 is controllable, it is trivially true that

B2 ⊂ B
ctr
1 + B

ctr
2 . (4.73)

Combining (4.72) and (4.73), we get

B1 + B2 ⊂ B
ctr
1 + B

ctr
2 ,

which when combined with the trivial inclusion B1 + B2 ⊃ Bctr
1 + Bctr

2 yields

B1 + B2 = B
ctr
1 + B

ctr
2 . (4.74)

If B2 is uncontrollable, applying the same procedure as we have done to B1,
we yield (see (4.72))

B2 = B
ctr
1 + B

ctr
2 . (4.75)

Again, combining (4.72) and (4.75) yields (4.74). Hence by Theorem 4.45, the in-
terconnection is uniformly weakly compatible.

To prove that the converse is not true, consider the following counterexample.

Take R1 =

[

1 0 0
0 1 0

]

, and R2 =

[

0 1 0
0 0 1

]

. Clearly B1 and B2 are control-

lable and, by Theorem 4.45, B1 ‖ B2 is uniformly weakly compatible. However,
[

RT
1 RT

2

]T
does not have full row rank. Hence B1 ‖ B2 is not regular.

Remark 4.50. The counterexample in the proof of Lemma 4.49 is also an example
of a regular feedback interconnection, which is not a regular interconnection.

Notice that the result in Lemma 4.49 is restricted to behaviors is L
q
c . We can

easily extend this result to behaviors in
−→
L

q
c and L̄

q
c as follows.

Lemma 4.51. Let B1 and B2 be both L̄
q
c or

−→
L

q
c behaviors. The interconnection

B1 ‖ B2 is uniformly weakly compatible if it is regular. The converse is generally
not true.

94

4.2 Compatibility constraint

Proof. First, we consider the case when both B1 and B2 are in L̄
q
c . Denote the

infinitely differentiable part of B1 and B2 as

B̃1 := B1 ∩ C
∞(R,Rq), (4.76)

B̃2 := B2 ∩ C
∞(R,Rq). (4.77)

In Lemma 4.49 we have shown that if the interconnection is regular, then

B̃1 + B̃2 = B̃
ctr
1 + B̃

ctr
2 . (4.78)

In [PW98], it is proven that Bctr
1 is the closure of B̃ctr

1 in the topology of locally

integrable functions Lloc
1 (R,Rq). Similarly Bctr

2 is the closure of B̃ctr
2 . Therefore,

by taking the closure of both sides of (4.78), we obtain

B1 + B2 = B
ctr
1 + B

ctr
2 . (4.79)

Hence the interconnection is uniformly weakly compatible.

For the case when both B1 and B2 are in
−→
L

q
c , consider the closure of B1 and

B2, denoted as B̄1 and B̄2. We have shown that if the interconnection is regular
then

B̄1 + B̄2 = B̄
ctr
1 + B̄

ctr
2 . (4.80)

If we take the left continuous part of both sides of (4.80), we obtain (4.79).
Finally, to show that the converse statement of the lemma is generally not true,

we can use the same counterexample as in the proof of Lemma 4.49.

We can also pose a corollary of Lemma 4.49 for behaviors in L
q
d.

Corollary 4.52. Let B1 and B2 be behaviors in L
q
d defined by

Bi := {w | Ri (σ)w = 0} , i = 1, 2, (4.81)

where R1 and R2 are full-row-rank polynomial matrices with g1 and g2 rows re-
spectively and q columns. The interconnection B1 ‖ B2 is uniformly weakly com-
patible if it is regular. The converse is generally not true.

A proof of this corollary can be constructed in a way analogous to that of Lemma
4.49.

So far we have discussed uniform compatibility and uniform weak compatibil-
ity of interconnections of linear systems. However, because of time invariance,
uniform compatibility is equivalent to compatibility. Similarly, uniform weak
compatibility is equivalent to weak compatibility. As a summary of the discus-
sion about compatibility of linear behaviors, in Figure 4.7 we present a diagram
that describes the relation between various notions of compatibility that we have
discussed so far.

In the following example, we present a noncompatible interconnection of two
behaviors, which is weakly compatible. This example is an adaptation from the
door closing mechanism example in [Wil97].

95

4 Control as interconnection

��������	

�
�
	��

�

�����

�

�
�
	��

�
��	�

��������	

�
�

�

�
�

�

�
�

�

�
�

�

Figure 4.7: Various notions of compatibility of linear systems.

Example 4.53. Consider a moving mass that can slide without friction on a sur-

face. We model the dynamics of this system as a behavior in
−→
L 2

c given by the
following kernel representation

B1 =

{

(x, F) |
d2

dt2
x− F = 0

}

. (4.82)

Here the variables are x and F: the position of the block mass and the total of
external force acting on it respectively. This is a second order system, and thus
its McMillan degree is 2. To the block mass we can attach a spring and damper
system, whose dynamics can be modelled as

B2 =

{

(x, F) |
d

dt
x+ x+ F = 0

}

.

This is a first order system, and thus its McMillan degree is 1. The interconnected
system B := B1 ‖ B2 is represented by

[

d2

dt2
−1

d
dt

+ 1 1

] [

x
F

]

= 0. (4.83)

It is easy to see that the McMillan degree of B is 2. Thus, the interconnection is
not compatible. However, it can also be verified that the interconnection is weakly
compatible. Indeed, we intuitively know that before we can interconnect the mass
and the spring-damper system, we must prepare the trajectory. This is done, for
example, by matching x and dx

dt
in both behaviors [Wil97].

96

4.2 Compatibility constraint

4.2.3 Achievability with compatibility constraint

In this subsection, we shall discuss how the compatibility constraint affects the
achievability of a specification in a control problem. Since all the results we have
so far are about linear systems, we shall restrict our attention to this class of sys-
tems.

In the presence of compatibility constraint, the formulation of the control prob-
lem becomes as follows.

Compatible control problem Given a system called the plant. The problem is to
find a behavior (called the controller), with the following properties.
(i) The interconnection between the controller and the plant is compatible
(or weakly compatible).
(ii) When interconnected with the plant behavior in a specified manner (in
terms of a projection acting on the plant), the controller yields the specifica-
tion.

In a more exact formulation, the problem can be described as illustrated in Fig-
ure 4.1. Given a plant to be controlled. It has two kinds of variables:
(i) to-be-controlled variables, which are denoted as w and
(ii) control variables, which are denoted as c.
The size of w and c are denoted as w and c respectively. Since we are discussing
about linear behaviors, the full plant behavior can be expressed in the kernel rep-
resentation as

P =

{

(w, c) | R

(

d

dt

)

w +M

(

d

dt

)

c = 0

}

, (4.84)

or, in the discrete time case,

P = {(w, c) | R (σ)w +M (σ) c = 0} . (4.85)

The specification S is a behavior expressed in terms of the to-be-controlled vari-
ables. Thus it can be expressed as

S =

{

w | S

(

d

dt

)

w = 0

}

, (4.86)

or, in the discrete time case,

S = {w | S (σ)w = 0} . (4.87)

The control problem amounts to finding a controller C, which is a behavior ex-
pressed in terms of the control variables, such that

πsπ
−1
c (πcP ‖ C) = S. (4.88)

Here the projections πs and πc correspond to the elimination of c and w respec-
tively. This is a formulation that we have discussed earlier in this chapter.

97

4 Control as interconnection

Recall our discussion about elimination of variables in the previous chapter.

For behaviors in
−→
L

q
c and L̄

q
c , exact elimination is not always possible. However, in

the discussion about control problem, we shall assume that we can always do the
elimination corresponding to πs. Therefore, instead of getting the exact projection,
we shall get the closure of the projection in the topology of Lloc

1 (R,Rq). This is not
too bad, because it means that although we might not get the desired specification
exactly, we can approximate any trajectories with any desired accuracy. We are
not concerned by the elimination related to πc, because we shall see later that
the interconnection between the plant and the controller can be regarded as a full
interconnection.

Now we shall incorporate a compatibility constraint into the control problem.
As we have seen in the previous subsection, compatibility and weak compatibility
are defined for full interconnection. To apply these notions in this problem, we use
the fact that the behavior C, which is a behavior of type (R,Rc) or (Z,Zc), can be
seen as a behavior of type (R,Rw+c) or (Z,Zw+c). Suppose that C is represented as

C =

{

c | C

(

d

dt

)

c = 0

}

or C = {c | C (σ) c = 0} ,

we can also express it as

C′ =

{

(w, c) | C

(

d

dt

)

c = 0

}

or C′ = {(w, c) | C (σ) c = 0} .

Hence w is free in C′. The compatibility constraint then takes the form of requiring
the interconnection P ‖ C′ to be compatible or weakly compatible.

As we have seen earlier, compatible interconnection is equivalent to regular
feedback interconnection. Thus, requiring P ‖ C′ to be compatible is equivalent to
requiring that P ‖ C′ is a regular feedback interconnection. To find necessary and
sufficient conditions for a control problem to be solvable with a regular feedback
interconnection is not yet solved. The problem is called ’regular feedback imple-
mentability of linear differential behavior’. It is an open problem in the systems
and control community [Tre04].

If we relax the requirement and aim to have a controller such that P ‖ C′ is
weakly compatible, we can derive necessary and sufficient conditions for it. In
fact, we shall show that the control problem is solvable by a weakly compatible
controller if and only if it is solvable by a regular controller. By weakly compatible
controller and regular controller we mean controllers whose interconnection with
the plant P is weakly compatible and regular respectively.

Lemma 4.54. Let the plant be given as

P =

{

(w, c) | R

(

d

dt

)

w +M

(

d

dt

)

c = 0

}

, (4.89)

and the controller as

C′ =

{

(w, c) | C

(

d

dt

)

c = 0

}

. (4.90)

98

4.2 Compatibility constraint

The interconnection P ‖ C′ is weakly compatible if and only if πcP ‖ C is weakly
compatible, where

C =

{

c | C

(

d

dt

)

c = 0

}

. (4.91)

Proof. (if) For brevity, denote Pc := πcP . Suppose that Pc ‖ C is weakly compati-
ble. Then,

Pc + C = Pctr
c + Cctr. (4.92)

We need to show that
P + C′ = Pctr + C′ctr. (4.93)

Suppose that Pc + C is represented by L(d
dt

)c = 0, since w is free in C′, we can
represent P + C′ by

P + C′ =

{

(w, c) | L

(

d

dt

)

c = 0

}

. (4.94)

Take any (w, c) ∈ P + C′. We have that c ∈ Pc + C. Hence we can write c = c1 + c2,
where c1 ∈ Pctr

c and c2 ∈ Cctr. We can always find a w1, such that (w1, c1) ∈ Pctr.
Furthermore, we have that (w − w1, c2) ∈ C′ctr. Therefore,

(w, c) = (w1, c1) + (w − w1, c2), (4.95)

and thus (w, c) ∈ Pctr + C′ctr.
(only if) Suppose that P ‖ C′ is weakly compatible. Then, (4.93) holds. We need

to show that (4.92) also holds. Take any c ∈ Pc + C. Take any w, we have that
(w, c) ∈ P + C′. By (4.93), we can find always (w1, c1) ∈ Pctr and (w−w1, c− c1) ∈
C′ctr. However, this means c1 ∈ Pctr

c and (c− c1) ∈ Cctr. Thus, c ∈ Pctr
c + Cctr.

A similar result for discrete time linear systems can be derived, by replacing
the (d

dt
) operator with σ. From here we can conclude that requiring that P ‖ C′ is

weakly compatible is equivalent to requiring that πcP ‖ C is weakly compatible.
Thus, the control problem with weak compatibility constraint can be expressed as
follows.

Problem 4.55. Given the plant P , where

P =

{

(w, c) | R

(

d

dt

)

w +M

(

d

dt

)

c = 0

}

, (4.96)

and the specification S, where

S =

{

w | S

(

d

dt

)

w = 0

}

. (4.97)

Find a controller C of the form

C =

{

c | C

(

d

dt

)

c = 0

}

(4.98)

99

4 Control as interconnection

such that
(i) πsπ

−1
c (πcP ‖ C) = S,

(ii) πcP ‖ C is weakly compatible.

If we replace d
dt

in this problem by σ, we get its discrete time version. We then
use the following lemma [JS03].

Lemma 4.56. Let P and S be linear behaviors characterized by

P :=

{

w | P

(

d

dt

)

w = 0

}

, (4.99)

S :=

{

w | S

(

d

dt

)

w = 0

}

. (4.100)

There exists a behavior C,

C :=

{

w | C

(

d

dt

)

w = 0

}

,

such that P ‖ C = S and the interconnection is weakly compatible if and only if
there also exists a C′ such that P ‖ C′ = S and the interconnection is regular.

Proof. (if) This is trivial since P ‖ C′ is also weakly compatible.
(only if) If P ‖ C = S and the interconnection is weakly compatible then nec-

essarily for all p ∈ P , there exists an s ∈ S such that p is weakly directable to s.
Equivalently, this means for every p ∈ P , there exist an s ∈ S and a p′ ∈ Pctr such
that

p = s+ p′.

Pctr is the controllable part of P . Therefore we can have the following relations.

S ⊂ P , (4.101a)

S + Pctr = P . (4.101b)

In [BT02], (4.101) is proven to be necessary and sufficient conditions for the exis-
tence of a C′ such that P ‖ C′ = S and the interconnection is regular.

Again, a similar result for discrete time linear systems can be derived, by replac-
ing the (d

dt
) operator with σ. Thus, we can conclude even further, that the control

problem with weak compatibility constraint can be expressed equivalently as fol-
lows.

Problem 4.57. Given the plant P , where

P =

{

(w, c) | R

(

d

dt

)

w +M

(

d

dt

)

c = 0

}

, (4.102)

100

4.2 Compatibility constraint

and the specification S, where

S =

{

w | S

(

d

dt

)

w = 0

}

. (4.103)

Find a controller C of the form

C =

{

c | C

(

d

dt

)

c = 0

}

(4.104)

such that
(i) πsπ

−1
c (πcP ‖ C) = S,

(ii) πcP ‖ C is regular.

The problem of finding necessary and sufficient conditions for solving this prob-
lem is known as the ’regular implementability’ problem. It has been proven in
[BT02, Bel03] that such conditions exist.

Theorem 4.58. (cf. Theorem 4 in [BT02]) Let the plant be given as

P =

{

(w, c) | R

(

d

dt

)

w +M

(

d

dt

)

c = 0

}

, (4.105)

and the specification as

S =

{

w | S

(

d

dt

)

w = 0

}

. (4.106)

There exists a controller C such that πsπ
−1
c (πcP ‖ C) = S and πcP ‖ C is regular if

and only if
(i) N ⊂ S ⊂ πsP and
(ii) S+(πsP)ctr = πsP .
Here the behavior N is the so called hidden behavior, represented by

N =

{

w | R

(

d

dt

)

w = 0

}

. (4.107)

A specification S that can be achieved using a regular controller as in Theo-
rem 4.58 is said to be regularly achievable. In the literature this term is also called
regularly implementable [BT02, Bel03]. Combining Lemma 4.54, Lemma 4.56 and
Theorem 4.58, we obtain the following result.

Theorem 4.59. Let the plant be given as

P =

{

(w, c) | R

(

d

dt

)

w +M

(

d

dt

)

c = 0

}

, (4.108)

and the specification as

S =

{

w | S

(

d

dt

)

w = 0

}

. (4.109)

101

4 Control as interconnection

There exists a controller C′,

C′ :=

{

(w, c) | C

(

d

dt

)

c = 0

}

(4.110)

such that πs(P ‖ C′) = S and P ‖ C′ is weakly compatible if and only if
(i) N ⊂ S ⊂ πsP and
(ii) S+(πsP)ctr = πsP .
Here the behavior N is the so called hidden behavior, represented by

N =

{

w | R

(

d

dt

)

w = 0

}

. (4.111)

A discrete time version of this result can be obtained by replacing the (d
dt

) oper-
ator with σ. Thus, Problem 4.55 is solvable if and only if Problem 4.57 is solvable,
and Theorem 4.59 (and Theorem 4.58) gives the necessary and sufficient condition
for solving them.

4.3 Input-output partition constraint

4.3.1 Constraint formulation

In this section we present another kind of constraint that can arise when we inter-
connect two systems.

One of the features of the behavioral approach to systems theory is that no a
priori distinction is made between input and output variables of a system [Wil91,
PW98]. This means that given a certain law that describes the system, the system
is identified by the collection of its trajectories as is. Therefore, it is not necessary
to have any input-output structure when describing the system.

However, when two systems are interconnected, sometimes some input-output
structure can emerged naturally as a constraint. Consider the following example.

Example 4.60. Consider a tank filled with water as shown in Figure 4.8. On top of
the tank is an inlet from which a variable flow of water can get into the tank. This
variable models, for example, rain fall. We denote the water flow from this inlet
as e. On the bottom of the tank, there is an opening connected to a pump that can
pump water out of/into the tank. We denote the amount of water flow pumped
out of the tank as u. The tank is also equipped with a sensor that measures the
change of volume of water inside the tank, the measurement of the sensor is de-
noted as d. The mathematical model of this system can be simply written as

d(t) = e(t) − u(t). (4.112)

Now consider the following control problem. Given d and u as control variables,
we want to design a controller such that the level of water is constant, i.e. e(t) =
u(t). In other words, we aim at perfect tracking of e by u. Intuitively, we know

102

4.3 Input-output partition constraint

pump controller

Z[\]

[̂\]

_[\]

Figure 4.8: The water tank system in Example 4.60.

that such task cannot be accomplished. However, consider the following analysis.
First we write the plant behavior in a kernel representation.

P = {(e, u, d) | e(t) − u(t) − d(t) = 0}. (4.113)

We then take a candidate controller C expressed by

C = {(u, d) | d(t) = 0}. (4.114)

The interconnection P ‖ C is represented by the

[

1 −1 −1
0 0 1

]





e
u
d



 = 0. (4.115)

Notice that the interconnection exhibits the following features.
(i) The interconnection is a regular feedback interconnection and thus it is com-
patible.
(ii) The controller can indeed be expressed only in terms of u and d.
(iii) In the ”closed loop”behavior, perfect tracking e(t) = u(t) is attained.

In the example above, the controller satisfies the compatibility constraint and
accomplishes the task. However, this is still counter intuitive, and impossible to

103

4 Control as interconnection

pump controller

àbc

dabc

eabc

Figure 4.9: The water tank system in Example 4.61.

implement. The variable d is a measurement coming from a sensor, and yet we
use it to control the system. Otherwise stated, we control the system by restricting
the reading of a sensor.

Motivated by Example 4.60, we know that we need to introduce a new kind of
constraint. Before we proceed to do that, consider the following example, which is
a continuation of Example 4.60.

Example 4.61. Consider again the water tank system in Example 4.60. Let us swap
the name of variables involved in the system as follows. We swap d and u. The
schematic of the system is now shown in Figure 4.9. Notice that the mathematical
model of the system is still given by (4.113). Now take the controller C given by
(4.114). Clearly, the features of the interconnection (4.115) are still there. What
the controller now does is shut down the pump. This controller does not keep
the water level constant. But, that is not the fact that we are interested in. The
interesting observation is that now the interconnection does make sense.

These two examples suggest the following facts.

• The new constraint we are going to formulate later cannot be formulated
based on the mathematical representation of the systems alone. The situa-
tions described in Example 4.60 and Example 4.61 share the same mathemat-
ical representation, yet in one situation the constraint is not satisfied, while

104

4.3 Input-output partition constraint

in the other it is. This is in contrast with the compatibility constraint, where
the constraint can actually be derived from the behaviors themselves.

• The new constraint is different from the compatibility constraint. Example
4.60 describes a situation where the compatibility constraint is met, while
the new constraint that we are going to formulate is not.

As is indicated by the Example 4.60, the constraint is violated when the plant is
restricted through a variable that is inherently an output of the system. That is, the
variable is physically dictated to be an output of the system. The information that
a variable is an output cannot be deduced from the mathematical description of
the system, rather it has to be provided in addition to the description of the plant.

We say that the constraint is met if the controller accepts the declared output of the
plant as its input. To say it differently, suppose that y is a (set of) variable(s) that is
a part of the control variables. If y is declared as output because of some physical
interpretation of the system, the constraint is met if we can partition the variables
of the controller, such that y belongs to the input part. Input-output partitioning
of the variables of a linear system has been introduced in Definition 4.46.

The control problem with input-output partitioning constraint for linear sys-
tems is then formally defined as follows.

Definition 4.62. Given a control problem, where the plant is

P =

{

(w, u, y) | R

(

d

dt

)

w + P

(

d

dt

)

u+Q

(

d

dt

)

y = 0

}

. (4.116)

The control variables are u and y, where y is the predefined output variables of
the plant. A controller C described as

C =

{

(u, y) | C1

(

d

dt

)

u+ C2

(

d

dt

)

y = 0

}

, (4.117)

is said to satisfy the input-output constraint if the variables in C can be partitioned
such that y belongs to the input part.

Lemma 4.63. Given a linear system

C =

{

(u, y) | C1

(

d

dt

)

u+ C2

(

d

dt

)

y = 0

}

. (4.118)

Without loss of generality we assume that [C1 C2] is full row rank. The following
statements are equivalent.
(i) The variables in C can be partitioned such that y belongs to the input part
(ii) C1 is full row rank.
(iii) If C is the strong solution of the kernel representation, i.e. C ∈L

u+y
c , for any

y ∈ C∞(R,Ry) there exists a u ∈ C∞(R,Ru) such that (u, y) ∈ C.

105

4 Control as interconnection

Proof. (ii ⇒ i) Suppose that C1 is full row rank. If C1 is a square matrix, then we
already have an input-output partition with u as the output and y as the input. If
C1 is not square, then we can partition it into

C1 =
[

C11 C12

]

, (4.119)

possibly after rearranging the columns, such that C11 is a square matrix with full
row rank. We can also partition u accordingly into u1 and u2. Now we have an
input-output partition with u1 as the output and u2 and y as the input.

(i ⇒ iii) Suppose that the variables in C can be partitioned such that y belongs
to the input partition. This means we can partition u into u1 and u2, such that
we have u1 as the output and u2 and y as the input. So we can partition C ac-
cordingly such that (4.119) holds. Following the elimination procedure in Subsec-
tion 3.2.2, we can eliminate u1 and find that the behavior in terms of y and u2 is
C∞(R,Ry+u2).

(iii ⇒ ii) We shall prove it by contradiction. Suppose that C1 is not full row
rank. The matrix [C1 C2] can be transformed (by premultiplication with a suitable
unimodular matrix) into

[

C′
1 C′

21

0 C′
22

]

,

where C′
1 and C′

22 are full row rank. Following the elimination procedure in Sub-
section 3.2.2, we can eliminate u and find that the behavior in terms of y is the
kernel of C′

22(
d
dt

). Hence, we cannot choose any y ∈ C∞(R,Ry) as a trajectory of
y.

Statement (ii) of Lemma 4.63 gives us a way to test whether a given controller
satisfies the input-output partitioning constraint. The results above can be applied
to discrete time linear systems by replacing d

dt
with σ.

Remark 4.64. A remark on statement (iii) of Lemma 4.63. This statement is equiv-
alent to the fact that the projection of C to the variable y (i.e. u is eliminated)

yields C∞(R,Ry). Suppose that we assume that C is in L̄
u+y
c instead of L

u+y
c , then

this statement is equivalent to the fact that the closure of the projection of C to the
variable y yields

The equivalent of the input-output partitioning of the variables of linear sys-
tems for discrete event systems is the partitioning of events that are used in the
synchronization into input and output events [LT89]. An input event e is always
enabled, meaning that in every state of the automaton there is always a transition
with label e. This means that the automaton cannot block the occurrence of event
e.

If we have an automaton as the plant of the control problem, and some events
in a set E are specified as output. This means that we need to find a controller that
acceptsE as input. Equivalently, the controller cannot block the occurrences of the
events in E. In the terminology of supervisory control of discrete event systems,
these events are called uncontrollable [CL99].

106

4.3 Input-output partition constraint

The fact that a variable is an input to a linear system and the fact that a set of
events is input to an automaton have something in common. We have seen in
Lemma 4.63 that the fact that u is an input to a linear system means that we can
choose any trajectory in the underlying function space to be the trajectory of u.
Since the fact that a set of events E is input to an automaton A means that A can
execute any event in E from any state, this implies that the projection of L(A), the
language generated by A, to the set of events E yields E∗. Hence we can take any
string over the alphabet E. However, the converse is not true. The fact that the
projection of L(A) to the set of events E yields E∗ is only equivalent to the fact
that the automaton can execute the events in E as many times as possible with
any order. This does not imply that the the automaton A can execute any event in
E from any state. The following automaton is a counterexample.

�

�

������

In this automaton, the projection of the generated language to {input} is input∗,
however from the initial state the automaton cannot execute input.

4.3.2 Achievability with compatibility and input-output partition

constraint

We now return to linear systems and we shall formulate necessary and sufficient
condition for solving a control problem with both compatibility constraint and
input-output partitioning constraint. We shall work with the continuous time
case. However, the treatment for the discrete time case follows immediately by
replacing the differential operator d

dt
with σ. Let us first formulate the problem.

Problem 4.65. Given a control problem, where the plant is

P =

{

(w, u, y) | R

(

d

dt

)

w + P

(

d

dt

)

u+Q

(

d

dt

)

y = 0

}

. (4.120)

The control variables are u and y, where y is the predefined output variables of
the plant. The to-be-controlled variable is w. The desired specification is given as

S =

{

w | S

(

d

dt

)

w = 0

}

. (4.121)

Find a controller C in the form of

C =

{

(u, y) | C1

(

d

dt

)

u+ C2

(

d

dt

)

y = 0

}

, (4.122)

107

4 Control as interconnection

such that
(i) πsπ

−1
c (πcP ‖ C) = S,

(ii) the interconnection πcP ‖ C is regular,
(iii) the controller C satisfies the input-output partitioning constraint as in Defini-
tion 4.62.

As usual, the symbol πs and πc denote the projection of the plant behavior by
eliminating the control variables and the to-be-controlled variables respectively.
Notice that here we require that the interconnection πcP ‖ C is regular instead
of weakly compatible. This is because regular interconnections have a nicer al-
gebraic characterization. Moreover, regular interconnections are always weakly
compatible.

We shall now devise an algorithm to solve the Problem 4.65. The algorithm will
also be equipped with a test that can determine whether or not the problem is
solvable. The first step of the algorithm is to check whether S is regularly achiev-
able. This can be done using the conditions given in Theorem 4.58. Obviously,
if S is not regularly achievable, the problem doesn’t have a solution. Let us now
assume that S is regularly achievable and proceed.

Notation 4.66. Consider Problem 4.65. Assume that S is regularly achievable. We
denote the class of regular controllers that achieves S as C

reg
S .

Assuming that S is regularly achievable, it is straightforward to see that Prob-
lem 4.65 is equivalent to the following problem.

Problem 4.67. Given a control problem, where the plant is

P =

{

(w, u, y) | R

(

d

dt

)

w + P

(

d

dt

)

u+Q

(

d

dt

)

y = 0

}

. (4.123)

The control variables are u and y, where y is the predefined output variables of
the plant. The to-be-controlled variable is w. The desired specification is given as

S =

{

w | S

(

d

dt

)

w = 0

}

. (4.124)

Assume that S is regularly achievable. Find a controller C ∈C
reg
S in the form of

C =

{

(u, y) | C1

(

d

dt

)

u+ C2

(

d

dt

)

y = 0

}

, (4.125)

such that the controller C satisfies the input-output partitioning constraint as in
Definition 4.62.

By Lemma 4.63 we can conclude that in order to solve Problem 4.67 we need to
find a controller C ∈C

reg
S in the form of (4.125) such that C1 is full row rank. We

shall use the following result.

108

4.3 Input-output partition constraint

Lemma 4.68. Let X be a subset of C
reg
S such that for any C ∈C

reg
S there exists a

C′ ∈ X such that C ⊆ C′. Then there exists a C ∈ C
reg
S satisfying the input-output

partitioning constraint if and only if there exists a C′ ∈ X that satisfies the con-
straint.

Proof. (if) Trivial, since X ⊂ C
reg
S .

(only if) Suppose that C ∈ C
reg
S satisfies the constraint. We shall show that any

C′ ∈ C
reg
S such that C ⊆ C′ also satisfies the constraint. Let C be given as the kernel

of
[

C1 C2

]

as in (4.125). We know that C1 is full row rank. Since C ⊆ C′, there

must be a full row rank matrix F such that C′ is the kernel of
[

FC1 FC2

]

. We
also know that FC1 is full row rank. Therefore C′ also satisfies the constraint.

Lemma 4.68 tells us that if we can construct a subset of C
reg
S with the property of

X , we do not need to search for the candidate controller in the whole C
reg
S . Rather,

we can restrict our attention in X . Now we are going to construct a subset X of
C

reg
S with the property as in Lemma 4.68.
Since S is regularly achievable, the canonical controller achieves it. The canoni-

cal controller is not necessarily regular [WBJT03]. Denote the canonical controller
as C. Two important properties of the canonical controller that we shall use in this
discussion are
(i) Ccan ⊂ πcP , thus Ccan ‖ πcP = Ccan,
(ii) It is the least restrictive controller in the sense that for any other controller C′

that achieves S,
(C′ ‖ πcP) ⊂ (Ccan ‖ πcP) = Ccan. (4.126)

Lemma 4.69. Define X as the set of all regular controllers C satisfying C ‖ πcP =
Ccan. Then
(i) X ⊂ C

reg
S ,

(ii) For all C ∈C
reg
S , there exists a C′ ∈ X such that C ⊂ C′.

Proof. Statement (i) follows as a consequence of the fact that any controller in X
achieves the specification S. We shall now prove statement (ii). Take any C ∈C

reg
S .

By definition of C
reg
S we know that

(a) C is a regular controller.
(b) For all w ∈ S, there exists a c ∈ C such that (w, c) ∈ P .
(c) For all c ∈ C, (w, c) ∈ P implies w ∈ S.

We construct C′ := C + Ccan. Clearly C ⊂ C′. We have to prove that C′ ∈ X. That
is, we have to prove that
(a’) C′ is regular.
(b’) C′ ‖ πcP = Ccan.
The statement (a’) follows from the fact that C ⊂ C′ and the regularity of C. To
prove (b’), first we show that C′ implements S. From here, (b’) follows from the
fact that Ccan ⊂ C′ and the property of Ccan being the least restrictive controller.
Showing that C′ implements S means showing that
(a”) For all w ∈ S, there exists a c′ ∈ C′ such that (w, c′) ∈ P .
(b”) For all c′ ∈ C′, (w, c′) ∈ P implies w ∈ S.

109

4 Control as interconnection

Statement (a”) follows immediately from (b). To show that (b”) holds, notice that
any c′ ∈ C′ can be written as c + ccan with c ∈ C and ccan ∈ Ccan. Also notice that
for all ccan ∈ Ccan, there exists a wcan ∈ S such that (wcan, ccan) ∈ P . Thus,

(w, c′) ∈ P ⇒ (w − wcan + wcan, c+ ccan) ∈ P

linearity
⇒ ((w − wcan), c) ∈ P

(c)
⇒ (w − wcan) ∈ S

linearity
⇒ w ∈ S.

We shall now find a parametrization of the kernel representation of the elements
of X as defined in Lemma 4.69. For that purpose, we use the following results.

Lemma 4.70. Consider Problem 4.65. Assume that S is regularly achievable. De-
note the canonical controller corresponding to this problem as Ccan. There exists a
regular controller C ∈ C

reg
S such that (C ‖ πcP) = Ccan.

Proof. Denote Pc := πcP . Since we know that S is regularly achievable, we can
construct a regular controller C′ that achieves it. Denote Kc := C′ ‖ Pc. Since C′ is
regular, we have that

Kc + Pctr
c = Pc, (4.127)

where Pctr
c is the controllable part of Pc. By the property of the canonical con-

troller, Kc ⊂ Ccan, thus
Ccan + Pctr

c = Pc. (4.128)

Equation (4.128) and Theorem 4.58 imply that there exists a regular controller C
such that (C ‖ Pc) = Ccan. The fact that C achieves the specification S (as Ccan

does) follows from the fact that

(C ‖ Pc) = (Ccan ‖ Pc). (4.129)

We shall use Lemma 4.70 in constructing a parametrization of the kernel repre-
sentation of the elements of X as defined in Lemma 4.69. However, in order to do
that we need the two lemmas below.

Lemma 4.71. Let a plant P be given as the kernel of a full row rank R(d
dt

) and a

regular controller C be given as the kernel of a full row rank C(d
dt

). Denote the full
interconnection

K := P ‖ C.

Let C′ be another regular controller such that P ‖ C′ = K. A minimal kernel
representation of C′ has exactly as many rows as C(d

dt
).

Proof. The number of rows in the minimal kernel representation of a behavior
equals the number of its output variables. Thus, this lemma is a direct conse-
quence of the definition of regularity (Definition 4.47).

110

4.3 Input-output partition constraint

Lemma 4.72. Let a plant P be given as the kernel of a full row rank R(d
dt

) and a

regular controller C be given as the kernel of a full row rank C(d
dt

). Denote the full
interconnection

K := P ‖ C.

Let CK denote the set of all controllers (not necessarily regular ones) that
(i) have at most as many rows in the minimal kernel representation as C and
(ii) also implement K when interconnected with P .
A controller C′ ∈ CK if and only if its kernel representation can be written as
V R+C for some matrix V.Moreover, every controller in C′ ∈ CK has the following
properties.
(a) C′ is regular.
(b) Its minimal kernel representation has exactly as many rows as that of C.

Proof. (if) Suppose that a controller C′ has (V R + C) as its kernel representation,
then P ‖ C′ is given by the kernel of

[

R
V R+ C

]

=

[

I 0
V I

] [

R
C

]

. (4.130)

This shows that P ‖ C′ = K. Moreover, since C is a regular controller, it follows
that (V R + C) is a minimal kernel representation of C′. Thus, properties (a) and
(b) are verified.

(only if) Suppose that a controller C′ satisfies (i) and (ii) above. This controller
can be written as the kernel of a matrix (not necessarily minimal) C′(d

dt
) with as

many rows as C(d
dt

). We know that there is a unimodular matrix U such that

U

[

R
C

]

=

[

U11 U12

U21 U22

] [

R
C

]

=

[

R
C′

]

. (4.131)

We shall prove that we can assume U to be of the form

U =

[

I 0
V I

]

. (4.132)

First, we find a unimodular matrix W such that

RW =
[

D 0
]

, (4.133)

where D is a square nonsingular matrix. We then use the following notation
[

R
C

]

W =:

[

D 0
C1 C2

]

, (4.134)

[

R
C′

]

W =:

[

D 0
C′

1 C′
2

]

. (4.135)

It follows that (4.131) can be rewritten as

U

[

D 0
C1 C2

]

W−1 =

[

D 0
C′

1 C′
2

]

W−1, (4.136)

111

4 Control as interconnection

and since W is unimodular,

U

[

D 0
C1 C2

]

=

[

U11 U12

U21 U22

] [

D 0
C1 C2

]

=

[

D 0
C′

1 C′
2

]

. (4.137)

Consequently, we have the following equations

U11D + U12C1 = D, (4.138a)

U12C2 = 0, (4.138b)

U21D + U22C1 = C′
1, (4.138c)

U22C2 = C′
2. (4.138d)

Since the controller C is regular, C2 must be full row rank. Now, (4.138b) implies
that U12 is a left annihilator of C2. Consequently

U12 = 0. (4.139)

Substituting this to (4.138a) yields

U11 = I. (4.140)

Since U is unimodular, this implies that U22 is unimodular. Thus, we can conclude
that

U =

[

I 0
U21 U22

]

, (4.141)

with U22 unimodular. Furthermore, C′′ := U22C
′ is also a kernel representation of

C′ so we can assume U22 to be the identity matrix without any loss of generality.

We take the following steps to construct a parametrization of the kernel repre-
sentation of the elements of X as defined in Lemma 4.69.

Step 1. Construct a regular controller C such that (C ‖ πcP) = Ccan. Lemma 4.70
guarantees that this can be done. The controller C and πcP can be repre-
sented in the form of

C =

{

(u, y) | C1

(

d

dt

)

u+ C2

(

d

dt

)

y = 0

}

, (4.142)

πcP =

{

(u, y) |M1

(

d

dt

)

u+M2

(

d

dt

)

y = 0

}

. (4.143)

Step 2. We apply Lemma 4.72 with Ccan and πcP playing the role of K and P re-
spectively. Because of Lemma 4.71, we know that a controller C′ represented
by

C′ =

{

(u, y) | C′
1

(

d

dt

)

u+ C′
2

(

d

dt

)

y = 0

}

(4.144)

112

4.3 Input-output partition constraint

is an element of X as defined in Lemma 4.69 if and only if there is a polyno-
mial matrix V such that

C′
1 = C1 + VM1, (4.145a)

C′
2 = C2 + VM2. (4.145b)

With these two steps we obtain (4.145) as the parametrization. Now, the final
step to solve Problem 4.67 is to find a polynomial matrix V such that C′

1 in (4.145a)
is full row rank. The necessary and sufficient condition for the existence of such a
matrix V is given in the following lemma.

Lemma 4.73. Given polynomial matrices C ∈ Rc×q[ξ] and M ∈ Rm×q[ξ]. There
exists a polynomial matrix V ∈ Rc×m[ξ] such that C + VM is full row rank if and
only if

rank

[

M
C

]

≥ c. (4.146)

Proof. (only if) Consider the following relation
[

I 0
V I

] [

M
C

]

=

[

M
C + VM

]

. (4.147)

Suppose that C + VM is full row rank. This means it has a rank of c. From (4.147)
we know that

rank

[

M
C

]

= rank

[

M
C + VM

]

≥ c. (4.148)

(if) Assume that (4.146) holds. If C or M is zero, we can obviously choose a V
such thatC+VM full row rank. We exclude this trivial case and suppose that both
M and C are nonzero. Since the rank of a matrix is not affected by multiplication
with unimodular matrices, we can assume without any loss of generality that M
has the form of

M =

[

M1 0
0 0

]

, (4.149)

where M1 is a diagonal matrix with nonzero determinant. Furthermore, with
some appropriate multiplication with unimodular matrix, we can transform C to
the following form.

C =





C11 C12

C21 0
0 0



 , (4.150)

where C12 and C21 are full row rank. Denote the rank of M1, C12, and C21 as m′,
c′, and c′′ respectively. We have the following relation

rank

[

M
C

]

= rank C12 + rank

[

M1

C21

]

, (4.151)

= c′ + m′, (4.152)

≥ c. (4.153)

113

4 Control as interconnection

Thus
m′ ≥ c− c′. (4.154)

We can partition V accordingly to form

V =





V11 V12

V21 V22

V31 V32



 . (4.155)

We choose the value of V to be

V =





0 0
0 0
V31 0



 , (4.156)

where V31 is to be chosen later. Therefore

C + VM =





C11 C12

C21 0
V31M1 0



 . (4.157)

Our goal is to make

[

C21

V31M1

]

a full row rank matrix. Since C21 is full row

rank and has the rank of c′′, we can find c′′ columns of C21 that form a square
matrix with nonzero determinant. Denote this selection as N. Obviously N ⊂

{1, 2, · · · , m′}. We construct V31 ∈ R(c−c
′−c

′′)×m
′

[ξ] such that the entries on the i−th
column of V31 are zero if i ∈ N . The remaining (m′ − c′′) columns of V31 form a
(c−c′−c′′) by (m′−c′′) matrix. From (4.154) we know that it is a wide matrix. We
choose the values of the entries of these columns such that this wide matrix is full

row rank. It follows that

[

C21

V31M1

]

is a full row rank matrix and hence C + VM

is full row rank.

To conclude, the following is the algorithm to solve Problem 4.65.

Algorithm 4.74. The following steps provide a solution to Problem 4.65 if and only
if it is solvable.
1. Verify if the specification S is regularly achievable. If it is, go to step 2, otherwise
Problem 4.65 is not solvable.
2. Construct the canonical controller for this problem, denote it as Ccan.
3. Construct a regular controller C such that (C ‖ πcP) = Ccan. Lemma 4.70
guarantees that this can be done. The controller C and πcP can be represented
in the form of

C =

{

(u, y) | C1

(

d

dt

)

u+ C2

(

d

dt

)

y = 0

}

, (4.158)

πcP =

{

(u, y) |M1

(

d

dt

)

u+M2

(

d

dt

)

y = 0

}

. (4.159)

114

4.4 Control problem with minimal interaction

4. Verify if

rank

[

M1

C1

]

≥ p(C), (4.160)

where p(C) denotes the number of output variables of C. If (4.160)is satisfied, go
to step 5, otherwise Problem 4.65 is not solvable.
5. Compute a V such that C1 + VM1 is full row rank. The existence of such V is
guaranteed by Lemma 4.73. A controller that solves Problem 4.65 is given as

C′ =

{

(u, y) |
[

C1 + VM1 C2 + VM2

]

(

d

dt

) [

u
y

]

= 0

}

. (4.161)

4.4 Control problem with minimal interaction

In this section we shall discuss a control problem related to Proposition 4.17. The
proposition states that given a control problem as in Problem 4.2, if the problem
is solvable, then it is also solvable if the projection πc is replaced with a bigger
projection φc. By larger we mean φc � πc.

This result induces a control problem that can be formulated as follows.

Control with minimal interaction Given a control problem as in Problem 4.2. As-
sume that the problem is solvable.
(i) Is it possible to replace the control projection πc with φc such that φc � πc

and retain the achievability of the specification?
(ii) Is there a unique minimal control projection by which the specification is
achievable?

As we have discussed earlier, the role of πc is to define the extent, to which the
controller can interact with the plant. Minimizing πc while retaining achievability
of the specification can mean:
(i) Using as few control variables as possible in linear systems.
(ii) Using as few events as possible in the synchronization between the controller
and the plant, in the control of discrete event systems.
(iii) A combination of both points above, in hybrid systems.

However, in this section we shall restrict our attention to the case of linear sys-
tems, as it turns out that the machinery that we build in the previous section can
also be used to analyze this problem. In the discussion we shall treat continuous
time systems. However, as usual, the results can be extended to discrete time lin-
ear systems by replacing the d

dt
operator with σ. We use the following definition

to formalize the problem statement.

Definition 4.75. Let a behavior B be given by the kernel representation

R1

(

d

dt

)

w1 +R2

(

d

dt

)

w2 = 0. (4.162)

If R1 is the zero matrix, then the variables in w1 are said to be irrelevant to B.

115

4 Control as interconnection

The problem of control with minimal interaction for linear systems, together
with the compatibility constraint can be cast as follows.

Problem 4.76. Given the plant P , where

P =

{

(w, c) | R

(

d

dt

)

w +M

(

d

dt

)

c = 0

}

, (4.163)

and the specification S, where

S =

{

w | S

(

d

dt

)

w = 0

}

. (4.164)

Suppose that S is regularly achievable. Find a regular controller C of the form

C =

{

c | C

(

d

dt

)

c = 0

}

(4.165)

that achieves S and has as many irrelevant variables as possible.

Since the number of variables is finite, clearly there is a maximal number of
irrelevant variables that can be attained. However, generally there is no unique
selection of variables to make up this maximal number.

To solve the problem we need to find a controller C that has as many irrelevant
variables as possible. This controller must be an element of C

reg
S , which is the

class of regular controllers that achieves S. We are going to use a result similar to
Lemma 4.68 for this purpose.

Lemma 4.77. Let X be a subset of C
reg
S such that for any C ∈C

reg
S there exists a

C′ ∈ X such that C ⊆ C′. If C ∈ C
reg
S is a controller that has the maximal number

of irrelevant variables, then there is a C′ ∈ X that has at least as many irrelevant
variables as C.

Proof. If a variable is irrelevant in C, it is also irrelevant in any C′ ⊇ C. Therefore if
a C ∈C

reg
S has n irrelevant variables, there is a C′ ∈ X that has at least n irrelevant

variables.

Lemma 4.77 tells us that if we can construct a subset X of C
reg
S with the property

described in the premise statement, then it is sufficient to search for the controller
in X instead of C

reg
S . However, from the previous section, we know that such

subset X exists (see Lemma 4.69) and is well parametrized (see Lemma 4.71 and
4.72). Therefore, the following algorithm can be used to solve the problem.

Algorithm 4.78. The following steps provide a solution to Problem 4.76.
1. Construct the canonical controller for this problem. Denote it as Ccan.
2. Construct a regular controller C such that (C ‖ πcP) = Ccan. Lemma 4.70

116

4.4 Control problem with minimal interaction

guarantees that this can be done. The controller C and πcP can be represented
in the form of

C =

{

c | C

(

d

dt

)

c = 0

}

, (4.166)

πcP =

{

c |M ′

(

d

dt

)

c = 0

}

. (4.167)

3. Find a matrix V such that C + VM ′ has as many zero columns as possible.

With this algorithm, we have transformed Problem 4.76 into an algebraic prob-
lem given in the third step of the algorithm. The solution to this algebraic problem
has a combinatorial aspect in it, as we generally need to search for the answer by
trying all possible subsets of the columns.

However, for a special case, where M ′ is in the Smith form, we can get a rela-
tively straightforward answer. In that case, we generally can write M ′ as

M ′ =

[

I 0 0
0 D 0

]

, (4.168)

whereD is a diagonal matrix whose diagonal entries are polynomials with degree
at least one. If πcP is controllable then the size of D is actually zero. Similarly, C
is partitioned as

C =
[

C1 C2 C3

]

. (4.169)

The problem becomes to find V = [V1 V2] such that

[

C1 C2 C3

]

+
[

V1 V2

]

[

I 0 0
0 D 0

]

=
[

C1 + V1 C2 + V2D C3

]

has as many zero columns as possible. The solution is obvious. The columns in
the left most partition can be nullified by choosing V1 = −C1. The columns in the
right most partition cannot be nullified, except for those that happen to be zero
columns. The i-th column of the middle partition can be nullified if and only if it
is a multiple of the polynomial Dii. HereDii denotes the i-th entry of the diagonal
of D.

Although we cannot present a complete procedure to compute the controller
with minimal interaction in the general case, we can present an upper bound for
the number of irrelevant variables in the controller.

Lemma 4.79. A controller C ∈ C
reg
S can have at most c− p(C) irrelevant variables.

Here c denotes the number of all control variables (the cardinality of c) and p(C)
denotes the number of output variables in C.

Proof. From Lemma 4.71 we know that all elements of C
reg
S have the same number

of output, i.e., p(C). This is the number of rows in a minimal kernel representation

117

4 Control as interconnection

of any controller in C
reg
S . It is easily seen that the number of columns is c. If a

controller C ∈ C
reg
S has more than c − p(C) irrelevant variables, then the nonzero

entries of its kernel representation form a tall matrix3, and thus cannot be minimal.
This contradicts Lemma 4.71.

We shall see later in this section that the upper bound given by Lemma 4.79 is
tight. There are some situations where this upper bound is actually reached.

An alternative problem of interest can be formulated as follows. Recall that in
the Problem 4.76, our goal is to use as few control variables as possible. These con-
trol variables are a part of the initial control variables. Now, suppose that instead
of picking a part of the original control variables as the new control variables di-
rectly, we first allow for an isomorphic transformation of variables to take place.
This means, we construct a new set of control variables cnew from the old ones c

by

cnew = T

(

d

dt

)

c. (4.170)

The matrix T is a unimodular matrix to be designed. Our goal is to design the
transformation T such that we can use as few variables in the new control vari-
ables cnew as possible. Of course, with this new selection of control variables, we
have to maintain regular implementability of the specification.

This alternative description of the problem also can be interpreted as control
with minimal information. This is because cnew and c contain the same ’amount’
of information, as they are related through an isomorphic transformation. It turns
out that this problem has a simple solution.

It can be verified that with this new problem formulation, the problem changes
from ’finding a V such that C + VM ′ has as many zero columns as possible’ to
’finding a V and a unimodular T such that (C + VM ′)T−1 has as many zero
columns as possible’. Obviously the new problem formulation is equivalent to
’finding a V such that C + VM ′ has as small column rank as possible’. From
Lemma 4.71 we know that C + VM ′ always has the same row rank as C, thus it
always has the same column rank as C. We can then take any matrix to be V . For
simplicity, we take V = 0. We then compute a unimodular matrix U such that

CU =
[

C̃ 0
]

, (4.171)

where C̃ has full column rank. The transformation is then

cnew = U−1

(

d

dt

)

c, (4.172)

and the new control variables that are relevant to the controller are the first p(C)
components of cnew. Here the symbol p(C) indicates the number of output vari-
ables of C. Therefore, if we are allowed to transform the control variables, we can

3A tall matrix is a matrix, in which there are more rows than there are columns.

118

4.4 Control problem with minimal interaction

obtain exactly c − p(C) irrelevant variables, which is the upper bound stipulated
by Lemma 4.79.

Now we apply the result in this section in a numerical example. Consider the
control problem as in Problem 4.65, where

R(ξ) =

















ξ −1 0 0
0 ξ −1 0
0 0 ξ −1
1 1 1 ξ + 1
1 0 0 0
0 0 0 1

















,M(ξ) =

















−1 0 0 0
0 0 0 0
0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

















, (4.173)

S(ξ) =









ξ + 1 −1 0 0
1 1 1 ξ + 2
0 ξ −1 0
0 0 ξ −1









. (4.174)

We can compute that the projected plant behavior πcP is given as the kernel of
M ′(d

dt
), where

M ′(ξ) =

[

ξ2 0 −ξ3 1
ξ3 + ξ2 + ξ + 1 1 −ξ4 − ξ3 − ξ2 − ξ − 1 0

]

. (4.175)

We can also verify that the specification S is regularly implementable. In fact, it is
implemented by a regular controller C′, which is the kernel of C′(d

dt
), where

C′(ξ) =

[

1 0 1 0
0 1 0 1

]

. (4.176)

We see that the controller C′ does not have any irrelevant variables.
Recall that the canonical controller Ccan is constructed as the behavior obtained

by eliminating w from the following behavior (see Definition 4.10),

{

(w, c) |

[

R M
S 0

](

d

dt

) [

w
c

]

= 0

}

.

Computing this, we obtain a kernel representation Ccan(
d
dt

) of Ccan, where

Ccan(ξ) =









ξ2 0 −ξ3 1
1 0 1 0

ξ4 + 2ξ3 + 2ξ2 + 2ξ + 2 1 0 0
ξ4 + 3ξ3 + 3ξ2 + 2ξ + 2 0 0 0









. (4.177)

We see the Ccan is not a regular controller. Nevertheless, we can construct a regular
controller C ∈ X as the kernel of C(d

dt
), where

C(ξ) =

[

1 0 1 0
ξ4 + 3ξ3 + 3ξ2 + 2ξ + 2 0 0 0

]

. (4.178)

119

4 Control as interconnection

We can see that C(ξ) already has two zero columns. This means the second and
fourth control variables are irrelevant in C. Following Lemma 4.79, we know that
there cannot be more than two irrelevant variables in a regular controller that im-
plements S. Thus C is a controller with minimal interaction.

As a final remark, notice the fact that in this particular example, the controller
with minimal interaction C has a McMillan degree of 4, while another regular con-
troller C′ has a McMillan degree of 0. This fact shows that while the controller with
minimal interaction uses fewer control variables to interact with the controller, it
can be more complex than a controller that uses more control variables.

4.5 Summary

In this chapter we discuss about control as interconnection in the behavioral frame-
work. We start with formulating some control problems in a general setting. Es-
sentially, control problem in the behavioral framework can be formulated as fol-
lows.

Control problem Given a system called the plant, . The problem is to find a behav-
ior (called the controller), which when interconnected with the plant behavior
in a certain manner yields some desired properties, usually given in terms
of another behavior (called the specification).

The simplest problem is the full interconnection control problem, where the in-
terconnection between the plant and the controller is defined as a full interconnec-
tion.

There are also other problems, namely when the plant and the controller are
interconnected with partial interconnection. We give some necessary and suffi-
cient conditions for the existence of the solution to these problems. We also put
forward the idea of canonical controllers. Canonical controllers are mathematical
constructs that solve the control problem if the problem is solvable at all.

We proceed to define some constraints that may arise when we want to design a
controller. The first constraint is the compatibility constraint. To put it simply in a
few words, the compatibility constraint dictates that the interconnection between
the plant and the controller should affect them causally. If the interconnection is
formed at a certain time instant in the time axis, then it should be the case that all
possible past trajectories of the systems prior to this time instant can be accommo-
dated by the interconnection. We introduce two notions of compatibility, namely
compatibility and weak compatibility. Subsequently we show that these concepts
are related to the already known concepts of regular and regular feedback inter-
connections of linear systems. While conditions for achievability of a specification
with a compatible/regular feedback interconnection remains an open problem,
we manage to present necessary and sufficient conditions for that with a weakly
compatible interconnection.

The second constraint that we discuss is the input-output partitioning constraint.
We argue that in modeling some systems, it can happen that some variables are

120

4.5 Summary

bound to be the output of the system. The exact definition of input and output
variables are defined. The analog of the situation where we have input and out-
put variables is when we have input and output events in automata.

For linear systems, we derive a procedure that can compute a controller that re-
spects both the compatibility constraint (in the form of regularity) and the input-
output partitioning constraint. The procedure also acts as a necessary and suffi-
cient condition for solvability of the control problem, as it produces a result if and
only if the problem is solvable at all.

In the final section of the chapter, we discuss about controller with minimal
interaction, particularly for linear systems. For linear systems, controller with
minimal interaction is a controller that respects the compatibility constraint (in the
form of regularity) and uses as few control variables as possible. We also present
a procedure that can compute a controller with minimal interaction.

121

4 Control as interconnection

122

5

External equivalence of systems

”All animals are equal but some animals are more equal than others.” -
George Orwell

5.1 External behavior equivalence

In this chapter we shall discuss about external equivalence of behaviors. So far in
this book, systems are identified with their behaviors, and therefore equivalence
of systems is understood as equality of the behaviors. In this chapter we are going
to look at this issue from different points of view.

Recall that a dynamical system Σ is formally expressed as a triple (T,W,B).

Definition 5.1. We factor the signal space W as

W = V × D. (5.1)

The space V is called the external signal space and D the internal signal space.

As a consequence of the distinction between external and internal signal space,
every trajectory w ∈ B ⊂ WT can be written as a tuple (v, d) ∈ VT × DT. We then
introduce the external and internal projections of B as follows.

Definition 5.2. The external projection πv of a behavior B is defined as

πv((v, d)) = v, ∀(v, d) ∈ B. (5.2)

The image of B under πv is called the external behavior of B. Similarly the inter-

nal projection πd is defined as

πd((v, d)) = d, ∀(v, d) ∈ B. (5.3)

We define the internal behavior of B as the image of B under πd.

With the definitions above, we define equivalence of external behavior as fol-
lows.

123

5 External equivalence of systems

Definition 5.3. Given two behaviors B1 and B2 of type (T,V×D1) and (T,V×D2)
respectively. Thus the behaviors share the same time axis and the same external
signal space. We say that B1 and B2 are external behavior equivalent if their
external behaviors are the same. We denote this property by B1 ≈ext B2.

Example 5.4. Consider the linear behaviors B1 and B2 of
−→
L 4

c given as follows.

Bi =







(x, u, y) |

[

d
dt

−Ai −Bi 0
I 0 −Ci

]





x
u
y



 = 0







, i = 1, 2, (5.4)

where

A1 =

[

0 1
−1 −2

]

;B1 =

[

0
1

]

;C1 =
[

1 0
]

, (5.5)

A2 =

[

−2 −1
1 0

]

;B2 =

[

1
0

]

;C2 =
[

0 1
]

. (5.6)

The variable x is an internal variable, while u and y are the external variables.
Notice that B1 and B2 differ in the ordering of the vector x. We therefore factor
the signal space W = R

4 into V × D = R
2 × R

2. The external projection of the
behaviors correspond to the elimination of the internal variable x. Substituting
the values of the matrices and eliminating x, we obtain

πvB1 = πvB2 =

{

(u, y) |
[

−1
(

d
dt

+ 1
)2

]

[

u
y

]

= 0

}

. (5.7)

Thus B1 and B2 are external behavior equivalent.

The significance of equivalence in the sense of ≈ext can be explained as follows.
Take two behaviors B1 and B2 of type (T,V × D1) and (T,V × D2) respectively.
Suppose that the external projection of each behavior specifies how the behavior
can be interconnected with other behaviors in each environment. By environment
we mean any system(s) that can interact with the behavior. Denote the behavior
of the environment by E . Generally we need a projection that projects the envi-
ronment to a behavior of type (T,V), since the environment can generally be of
any type. Denote this projection as πe. Therefore, the interaction between the
behaviors B1 and B2 and the environment can be modelled as (πvB1 ‖ πeE)
and (πvB2 ‖ πeE) respectively. Formally we should denote the external projec-
tion of B1 and B2 differently. However, since it is not likely to raise any confu-
sion, we suppress the notation by denoting both of them by πv. The trajectories
of the environment that are allowed after the interconnection with B1 and B2 are
π−1

e (πvB1 ‖ πeE) and π−1
e (πvB2 ‖ πeE) respectively.

Lemma 5.5. We have that

π−1
e (πvB1 ‖ πeE) = π−1

e (πvB2 ‖ πeE) (5.8)

for all possible environments E if and only if B1 ≈ext B2.

124

5.1 External behavior equivalence

Proof. (if) By definition B1 ≈ext B2 means πvB1 = πvB2.
(only if) Suppose that B1 and B2 are not external behavior equivalent. This

means that at least one of the following statements is true
(i) There exists a v ∈ πvB1 such that v 6∈ πvB2.
(ii) There exists a v ∈ πvB2 such that v 6∈ πvB1.
By symmetry, without loss of generality we assume that (i) is true. We shall con-
struct an environment E such that (5.8) does not hold. Let E be of type (T,V) and
πe be the identity map. Moreover, we construct E such that v ∈ E . Clearly, v is an
element of the left hand side of (5.8) but not of the right hand side.

Lemma 5.5 tells us that B1 ≈ext B2 means that the environment cannot dis-
tinguish between the two. For linear systems, the external behavior is typically
associated with the input-output behavior [PW98]. The reason behind it is that typi-
cally internal variables are the state variables of the system. Thus, eliminating the
state variables leaves us the input and output variables, as exemplified in Exam-
ple 5.4. However, as we shall see later in this chapter, internal variables can also
be of a different nature. They can also appear, for example, in the form of an input
to the system. In Subsection 5.2.2 we shall encounter this situation.

In the context of interconnection of linear systems, there is another notion of
external equivalence of systems. The notion is transfer function equivalence. Two
systems are said to be transfer function equivalent if they share the same transfer
function. The notion of transfer function is briefly introduced in Definition 4.42
(as transfer matrix) and is discussed extensively in textbooks on linear systems
and control, for example, [Oga90, Bro91]. In [PW98], it is proven that two sys-
tems are transfer function equivalent if and only if the controllable part of their
input-output behaviors are equal. Thus, external behavior (input-output behav-
ior) equivalence is stronger than transfer function equivalence.

The notions of external and internal signal space applies to discrete event sys-
tems in the following way. Since the signal space of the system is the alphabet (see
Chapter 2), we factor the alphabet of the system into

E = V × D. (5.9)

Again, V denotes the external part and D the internal part. We consider the lan-
guage generated by an automaton as the external behavior of the system. There-
fore, two automata are external behavior equivalent if and only if they share the
same generated language.

It is well known that in nondeterministic automata, the state is generally not
observable from the language of the automata. That is, given a string of events
s, the state that can be reached by executing this string is not unique. However,
we can use the internal part to enrich the language with more information, such
that the state is observable. Consider the example depicted in Figure 5.1. The
automaton on the left is nondeterministic. However, if we assume the event a to
have external and internal values, it is possible to assign different internal values
to the events so that a on the left branch can be differentiated from a on the right
branch. This is done in the automaton on the right. In this automaton we no

125

5 External equivalence of systems

�

� �

� �

�

� �

����� �����

Figure 5.1: Nondeterministic and deterministic automata.

longer have nondeterminism and the state of the automaton is observable from
the language.

We want that the state is observable from the trajectory because in the frame-
work that we have built so far, state maps are by constructed on the trajectories
of the system Thus, state maps are always observable from the trajectory. In the
next section, we shall discuss another notion about external equivalence of sys-
tems, which is called bisimulation. Our aim is to analyze bisimulation with the
framework that we have developed and see how some general results that can be
applied to, for example, linear systems and discrete event systems can be obtained.

5.2 Bisimulation as external equivalence

5.2.1 Introduction

The concept of bisimulation originates from the field of discrete event systems /
concurrent processes [Par81, Mil89, Arn94, BPS01]. Bisimulation for finite state
automata can be defined as follows.

Definition 5.6. Let A1 = (X1, E, T1, Xm1, x01) and A2 = (X2, E, T2, Xm2, x02) be
two finite state automata. A bisimulation R is a relation betweenX1 and X2 (thus
R ⊂ X1 ×X2) that satisfies of the following properties.
(1a) For any (x1, x2) ∈ R and a ∈ E such that (x1, a, x

′
1) ∈ T1 for some x′1 ∈ X1,

there exists an x′2 ∈ X2 such that (x2, a, x
′
2) ∈ T2 and (x′1, x

′
2) ∈ R.

(1b) For any (x1, x2) ∈ R and a ∈ E such that (x2, a, x
′
2) ∈ T2 for some x′2 ∈ X2,

there exists an x′1 ∈ X1 such that (x1, a, x
′
1) ∈ T1 and (x′1, x

′
2) ∈ R.

(2) (x01, x02) ∈ R.

Definition 5.7. When two finite state automataA1 andA2 are such that there exists
a bisimulation between them, as defined in Definition 5.6, we say that A1 and A2

are bisimilar. This property is denoted as A1 ≈bis A2.

Notice that bisimilarity relation ≈bis can be regarded as a relation among finite
state automata. Furthermore, we can prove the following results.

Lemma 5.8. (cf. Proposition 8.1 in [Arn94])For any finite state automata A1, A2,
and A3, the following statements hold.

126

5.2 Bisimulation as external equivalence

(reflexivity) A1 ≈bis A1.
(commutativity) If A1 ≈bis A2 then A2 ≈bis A1.
(transitivity) If A1 ≈bis A2 and A2 ≈bis A3 then A1 ≈bis A3.

Proof. (reflexivity) Construct R as the identity relation in the set of states of A1.
(commutativity) Let R be the bisimulation relation that defines A1 ≈bis A2. Due
to the symmetric nature of Definition 5.6, it can be proven that R−1 is a bisimu-
lation that defines A2 ≈bis A1. (transitivity) Let R12 and R23 be the bisimulation
relations that define A1 ≈bis A2 and A2 ≈bis A3 respectively. It can be readily
proven that the composite relation

R13 := R12 ◦ R23, (5.10)

:= {(ξ, ξ′′) | ∃ξ′ such that (ξ, ξ′) ∈ R12 and (ξ′, ξ′′) ∈ R23} (5.11)

is a bisimulation relation that defines A1 ≈bis A3.

Lemma 5.8 shows that bisimulation can be regarded as an equivalence relation
in the class of finite state automata.

Example 5.9. (adopted from [Her02]) The following two automata are models of
a data buffer system. These two automata are bisimilar. The bisimulation relation
is encoded in the shading of the states. States with similar shading are bisimilar.
We can visually verify that Definition 5.6 is indeed satisfied.

��

���

��

���

��

���

���

��

���
���

�� ��

The two automata and the bisimulation relation. The bisimulation relation is
expressed as the shading of the states.

Given the fact two automata are bisimilar, there can be more than just one bisim-
ulation relation between them. Consider the right automaton in Example 5.9. The
following illustration depicts a bisimulation relation between the automaton and
itself.

��

���

���

��

���
���

�� ��

��

���

���

��

���
���

�� ��

A bisimulation relation between an automaton and itself.

127

5 External equivalence of systems

However, we also know that the identity relation in the set of states also defines a
bisimulation relation. This fact is shown as follows.

��

���

���

��

���
���

�� ��

��

���

���

��

���
���

�� ��

Another bisimulation between the automaton and itself.

The following result can be proven about the relation between all bisimulation
relations between two automata.

Lemma 5.10. (cf. Proposition 8.1 in [Arn94]) For any finite state automata A1 and
A2, let (Ri)i∈I be a family of bisimulation relations between A1 and A2. The set I
is an index set of the family. The relation

R :=
⋃

i∈I

Ri (5.12)

is also a bisimulation relation between A1 and A2.

A consequence of Lemma 5.10 can be formulated as follows.

Corollary 5.11. For any bisimilar automata A1 ≈bis A2, there exists a unique
bisimulation R such that any other bisimulation relation is a subset of R. This
relation R is called the maximal bisimulation relation.

The relation between bisimilarity as a notion of equivalence between automata
and generated language equivalence can be presented as follows.

Theorem 5.12. Given two finite state automata A1 and A2, if A1 ≈bis A2 then
L(A1) = L(A2). The converse is generally not true.

We do not present a proof of this theorem, as it is a well known result. However,
we present the following counterexample, in which the converse of the theorem is
not true.

?

��

���
���

�� ��

��

���

���

��

���
���

�� ��

A counterexample showing two nonbisimilar automata with equal language.

128

5.2 Bisimulation as external equivalence

To see that these two automata are not bisimilar, simply look at the state marked
by ’?’. This state cannot be related to any state in the other automaton as it does
not have outgoing transition from it.

In the discussion so far, we have seen that bisimulation has a symmetry prop-
erty with respect to the automata involved. A simulation can be thought of as a
unidirectional version of bisimulation.

Definition 5.13. Let A1 = (X1, E, T1, Xm1, x01) and A2 = (X2, E, T2, Xm2, x02) be
two finite state automata. A simulation of A2 by A1 is a relation R ⊂ X1 ×X2 that
satisfies all of the following statements.
(1) For any (x1, x2) ∈ R and a ∈ E such that (x2, a, x

′
2) ∈ T2 for some x′2 ∈ X2,

there exists an x′1 ∈ X1 such that (x1, a, x
′
1) ∈ T1 and (x′1, x

′
2) ∈ R.

(2) (x01, x02) ∈ R.

When there exists a simulation of A2 by A1, we say that A1 simulates A2. This
property is denoted by A1 �sim A2.

As an analog of Lemma 5.8, we can present the following result.

Lemma 5.14. For any finite state automata A1, A2, and A3, the following state-
ments hold.
(reflexivity) A1 �sim A1.
(transitivity) If A1 �sim A2 and A2 �sim A3 then A1 �sim A3.

Notation 5.15. If A1 �sim A2 and A2 �sim A1, we denote this fact by A1 ≈sim A2.
The equivalence relation ≈sim is called mutual simulation.

Lemma 5.14 tells us that simulation can be regarded as a partial ordering in
the class of finite state automata. It is natural to conjecture that the equivalence
relation induced by this partial ordering coincides with the bisimilarity equiva-
lence relation. However, this is not the case. The relation between simulation and
bisimulation can be expressed as follows.

Theorem 5.16. Given two finite state automata A1 and A2, if A1 ≈bis A2 then

A1 �sim A2, (5.13)

A2 �sim A1. (5.14)

The converse of the theorem is generally not true. This is demonstrated by the
following counterexample. These two automata mutually simulate each other, but
they are not bisimilar.

�

�

�

�

�

A counterexample showing two automata that mutually simulate each other, but
are not bisimilar.

129

5 External equivalence of systems

The relation between simulation and the generated language of the automata is
presented in the following lemma.

Lemma 5.17. Given two finite state automata A1 and A2, if A1 �sim A2 then
L(A1) ⊇ L(A2).

The converse of this lemma is generally not true. A counterexample that proves
it is presented below. The two automata generate the same language. However,
the automaton on the left does not simulate the automaton on the right.

�

�

�

�
�

�
�

A counterexample showing two automata that share the same language, but do
not mutually simulate each other.

So far we have discussed three notions of equivalence of finite state automata.
They are bisimilarity (≈bis), mutual simulation (≈sim), and generated language
equivalence (≈ext). The relation between these notions can be summed up as fol-
lows.

≈bis⊆≈sim⊆≈ext . (5.15)

Remark 5.18. In terms of complexity, bisimulation of two automata is easier to
check than language equality [KS90, ABGS91, HS96].

5.2.2 Bisimulation of other types of systems

Following recent increased interest in hybrid systems, some efforts have been
made to extend known theories in both discrete event systems and continuous
dynamical systems to the field of hybrid systems. Similarly, there also has been
traffic of cross applications of theories between discrete event systems and contin-
uous dynamical systems. Bisimulation is one of them.

The concept of bisimulation has been extended and applied to hybrid systems,
for example in [LPS98, AHLP00, Sch04a, Sch04b, PvD04]. In addition, it has also
been applied to continuous dynamical systems, for example in [Pap03, Sch03b,
Sch04a] as well as discrete time dynamical systems [Pap03, Tab04].

Bisimulation is used as a notion of external equivalence of systems because it
enables consistent abstraction of systems. That is, with bisimulation the system can
be reduced to a quotient system with smaller state space, that preserves some
properties of interest [Pap03]. In particular, bisimulation is known to preserve
properties that can be expressed in temporal logics, such as, linear temporal logic
(LTL) and computational tree logic (CTL) [AHLP00, DN00].

130

5.2 Bisimulation as external equivalence

The approach taken in [Pap03] is to create a transition system corresponding to
systems of the form

dx

dt
= Ax+Bu, (5.16)

y = Cx. (5.17)

or its discrete time counterpart

x(k + 1) = Ax(k) +Bu(k), (5.18)

y(k) = Cx(k). (5.19)

The transition system is formed as an abstraction of the dynamical system under
study. The abstraction can be done at different levels, for example, time can be
present or it can be abstracted as well. The study of bisimulation of such systems
is a study about partitioning the state space into classes compatible with the linear
output map and requiring that the partitions are bisimilar.

The approach taken in [Sch03b] is more direct, in the sense that it does not ex-
plicitly define transition systems corresponding to the systems under study. The
dynamical systems studied there is in the following form.

dx

dt
= Ax+Bu+Gd, (5.20a)

y = Cx. (5.20b)

This is a standard state-space representation, except for the variable d. This vari-
able represents the so called disturbance that generates nondeterminism in the sys-
tem.

Bisimulation for systems in the form of (5.20) is defined as follows.

Definition 5.19. [Sch03b] Consider two dynamical systems of the form

Σi :
dxi

dt
= Aixi +Biui +Gidi, xi ∈ Xi, ui ∈ U , di ∈ Di

yi = Cixi, yi ∈ Y i = 1, 2
(5.21)

with Xi,Di,U ,Y finite dimensional linear spaces.
A bisimulation R between Σ1 and Σ2 is a linear subspace R ⊂ X 1 × X2 with the
following property.

∀x1 ∈ X1, ∃x2 ∈ X2 such that (x1, x2) ∈ R, (5.22)

∀x2 ∈ X2, ∃x1 ∈ X1 such that (x1, x2) ∈ R. (5.23)

Furthermore, if we take any (x10, x20) ∈ R and any joint input function u1(·) =
u2(·). Then for every disturbance function d1(·) there should exists a disturbance
function d2(·) such that the resulting state solution trajectories x1(·), with x1(0) =
x10, and x2(·), with x2(0) = x20, satisfy
(i) (x1(t), x2(t)) ∈ R, for all t ≥ 0

131

5 External equivalence of systems

(ii) C1x1(t) = C2x2(t), for all t ≥ 0
Conversely, for every disturbance function d2(·) there should exists a disturbance
function d1(·) such that the resulting state trajectories satisfy (i) and (ii).

Remark 5.20. Definition 5.19 slightly differs from the definition in [Sch03b]. The
difference is that in the original definition in [Sch03b], a bisimulation relation is
not required to satisfy the requirement (5.22) and (5.23). However, two systems
are said to be bisimilar, if there exists a bisimulation that satisfies these additional
requirements. Thus, we just move the requirements from the definition of bisim-
ilarity to the definition of the bisimulation relation. The definition of bisimilar
systems is therefore the same.

Two systems, between which a bisimulation relation exists, are said to be bisim-
ilar. Among the important results presented in [Sch03b] are:

• Bisimilarity among systems is an equivalence relation.

• An algorithm to compute the largest bisimulation relation is derived.

• Bisimilarity implies equality of external behaviors.

• Simulation between systems of the form (5.20) can be defined in a way anal-
ogous to Definition 5.19. In the paper, it is proven that mutual simulation
coincides with bisimilarity.

5.3 Bisimulation in the behavioral setting

In this section we shall discuss bisimulation in the general behavioral setting.
Studies of bisimulation in the general systems framework, encompassing more
than one class of systems, have also been done before. The reader is referred to,
for example, the work by Haghverdi et.al. in the category theoretical framework
[HTP02]; and to the more recent work by the same authors [HTP03].

A comparison between [HTP02, HTP03] and what we are going to do is that
in the former the analysis is geared towards general bisimulation for general sys-
tems, while in the latter a particular (non abstract) bisimulation is considered for
general systems.

As what we have discussed so far, bisimulation is defined as a notion of external
equivalence of systems. However, we need to emphasize the following idea.

At the beginning of this book, we introduced dynamical systems as a triple
Σ = (T,W,B). In this point of view, dynamical systems are identified by their
behaviors. What we are going to discuss in this section is a notion of (external)
equivalence of systems. However, the equivalence is not between dynamical sys-
tems as defined by their behaviors. Rather, we are going to define equivalence
between systems equipped with a state map. Furthermore, we are also going to
assume that the signal space of the systems is factored into the external and inter-
nal signal space as in Section 5.1.

132

5.3 Bisimulation in the behavioral setting

Definition 5.21. Given two dynamical systems Σ1 = (T,V × D1,B1) and Σ2 =
(T,V × D2,B2), with state maps x1 and x2 respectively. We denote the codomain
of the state maps as X1 and X2 respectively. A bisimulation relation R ⊂ X1 × X2

is a relation with the following property.

∀ξ1 ∈ X1, ∃ξ2 ∈ X2 such that (ξ1, ξ2) ∈ R, (5.24)

∀ξ2 ∈ X2, ∃ξ1 ∈ X1 such that (ξ1, ξ2) ∈ R. (5.25)

Furthermore, if we take any (ξ1, ξ2) ∈ R. Then, given any w1 := (v1, d1) ∈ B1 and
t1 ∈ T such that x1(w1, t1) = ξ1, the following holds. If t2 ∈ T is such that there
exists a w′ := (v′, d′) ∈ B2 such that x2(w

′, t2) = ξ2, then there exists a d2 ∈ πdB2

such that if we define

v2 := v′ ∧t2
t1
v1, (5.26)

w2 := (v2, d2), (5.27)

we have that

w2 ∈ B2, (5.28)

x2(w2, t2) = ξ2, (5.29)

d2(τ) = d′(τ), ∀τ ≤ t2, (5.30)

and for all τ > t2,
(x1(w1, τ − t2 + t1), x2(w2, τ)) ∈ R. (5.31)

Conversely, given any w2 := (v2, d2) ∈ B2 and t2 ∈ T such that x2(w2, t2) = ξ2, the
following holds. If t1 ∈ T is such that there exists a w′ ∈ B1 such that x1(w

′, t1) =
ξ1, then there exists a d1 ∈ πdB1 such that if we define

v1 := v′ ∧t1
t2
v2, (5.32)

w1 := (v1, d1), (5.33)

we have that

w1 ∈ B1, (5.34)

x1(w1, t1) = ξ1, (5.35)

d1(τ) = d′(τ), ∀τ ≤ t1, (5.36)

and for all τ > t2, (5.31) holds.

In words, the bisimulation requires that from any two bisimilar states1 it is pos-
sible to proceed with equal external trajectories while visiting states that are bisim-
ilar. This formulation can be regarded as a generalized version of Definition 5.19,
which is used in [Sch03b]. To obtain Definition 5.19 from Definition 5.21, we can
use the following comparison.

1Two states are bisimilar if they are related by the bisimulation relation.

133

5 External equivalence of systems

Definition 5.21 Definition 5.19
x1, x2 x1, x2

V U × Y
D1,D2 D1,D2

In addition to that, we need to assume that the state space representation in
Definition 5.19 is observable, since state maps are observable by default. However,
later we shall show that we do not lose any generality by requiring that the state
space representation is observable. This is because we can always factor out the
state space into the observable and non-observable part, work out the bisimulation
for the observable part and then extend it to cover the non-observable part as well.

Definition 5.22. Two dynamical systems Σ1 and Σ2 equipped with the state maps
x1 and x2 are said to be bisimilar if there exists a bisimulation relation between
them.

Notation 5.23. We shall denote the dynamical system Σ = (T,W,B) equipped
with the state map x by the pair (Σ, x). The fact that (Σ1, x1) and (Σ2, x2) are
bisimilar is denoted by (Σ1, x1) ≈bis (Σ2, x2).

5.3.1 Bisimilarity as an equivalence relation

Since the definition of bisimulation in Definition 5.19 induces the bisimilarity re-
lation ≈bis, which is an equivalence relation, we expect that the bisimulation re-
lation in the sense of Definition 5.21 also induces an equivalence relation among
pairs (Σ, x). The following propositions establish the fact that ≈bis is symmetric
and transitive.

Proposition 5.24. For any pairs (Σi, xi), i = 1, 2, if (Σ1, x1) ≈bis (Σ2, x2) then
(Σ2, x2) ≈bis (Σ1, x1).

Proof. Suppose that R ⊂ X 1 ×X2 is the bisimulation relation that defines (Σ1, x1)
≈bis (Σ2, x2). The bisimulation relation that defines (Σ2, x2) ≈bis (Σ1, x1) can be
constructed as R−1. That is,

(ξ, ζ) ∈ R−1 ⇔ (ζ, ξ) ∈ R. (5.37)

By the symmetry of the Definition 5.21 we can verify that R−1 is indeed a bisimu-
lation relation between (Σ2, x2) and (Σ1, x1).

Proposition 5.25. For any pairs (Σi, xi), i = 1, 2, 3. If (Σ1, x1) ≈bis (Σ2, x2) and
(Σ2, x2) ≈bis (Σ3, x3), then (Σ1, x1) ≈bis (Σ3, x3).

Proof. Let R12 and R23 be the bisimulation relations that define the bisimilarities
(Σ1, x1) ≈bis (Σ2, x2) and (Σ2, x2) ≈bis (Σ3, x3) respectively. We construct a candi-
date bisimulation relation between (Σ1, x1) and (Σ3, x3) as follows.

R13 := R12 ◦ R23. (5.38)

134

5.3 Bisimulation in the behavioral setting

Now we are going to verify that R13 is indeed a bisimulation relation. The fact
that the following relations hold is obvious.

∀ξ1 ∈ X1, ∃ξ3 ∈ X3 such that (ξ1, ξ3) ∈ R13, (5.39)

∀ξ3 ∈ X3, ∃ξ1 ∈ X1 such that (ξ1, ξ3) ∈ R13. (5.40)

Further, if we take any (ξ1, ξ3) ∈ R13. Then, given any w1 := (v1, d1) ∈ B1 and
t1 ∈ T such that x1(w1, t1) = ξ1, the following holds. If t3 ∈ T is such that there
exists a w′ := (v′, d′) ∈ B3 such that x3(w

′, t3) = ξ3, then we can show that there
exists a d3 ∈ πdB3 such that if we define

v3 := v′ ∧t3
t1
v1, (5.41)

w3 := (v3, d3), (5.42)

we have that

w3 ∈ B3, (5.43)

x3(w3, t3) = ξ3, (5.44)

d3(τ) = d′(τ), ∀τ ≤ t3, (5.45)

and for all τ > t3,

(x1(w1, τ − t3 + t1), x3(w3, τ)) ∈ R13. (5.46)

From (5.38) we can conclude that there exists a ξ2 ∈ X2 such that (ξ1, ξ2) ∈ R12 and
(ξ2, ξ3) ∈ R23. Let w̃ := (ṽ, d̃) ∈ B2 and t2 ∈ T be such that x2(w̃, t2) = ξ2. Since
(ξ1, ξ2) ∈ R12, this implies the existence of a d2 ∈ πdB2 such that if we define

v2 := ṽ ∧t2
t1
v1, (5.47)

w2 := (v2, d2), (5.48)

we have that

w2 ∈ B2, (5.49)

x2(w2, t2) = ξ2, (5.50)

d2(τ) = d̃(τ), ∀τ ≤ t2, (5.51)

and for all τ > t2,

(x1(w1, τ − t2 + t1), x2(w2, τ)) ∈ R12. (5.52)

Moreover, since (ξ2, ξ3) ∈ R23, there exists a d̃3 ∈ πdB3 such that if we define

ṽ3 := v′ ∧t3
t2
v2, (5.53)

w̃3 := (ṽ3, d̃3), (5.54)

135

5 External equivalence of systems

we have that

w̃3 ∈ B3, (5.55)

x3(w̃3, t3) = ξ3, (5.56)

d̃3(τ) = d′(τ), ∀τ ≤ t3, (5.57)

and for all τ > t3,

(x2(w2, τ − t3 + t2), x3(w̃3, τ)) ∈ R23. (5.58)

Now, notice that ṽ3 = v3, thus if we take d3 := d̃3 then (5.43) - (5.46) are satisfied.
So far we have proven that R13 is a simulation relation of (Σ1, x1) by (Σ3, x3). The
converse can be proven analogously to the proof above.

To prove that ≈bis is also reflexive, we need to construct a bisimulation between
any pair (Σ, x) with itself. The usual candidate for this purpose is the identity rela-
tion. However, as we see in the following proposition, we need more assumptions
to be able to use the identity relation as the bisimulation relation.

Proposition 5.26. For any pair (Σ, x), if x is Markovian and past induced then
(Σ, x) ≈bis (Σ, x).

Proof. We have to construct a bisimulation relation (in the sense of Definition 5.21)
between (Σ, x) and itself. We use the usual bisimulation to prove bisimilarity be-
tween a system and itself, namely, the identity relation

R ⊂ X ×X , (5.59)

(ξ, ζ) ∈ R if and only if ξ = ζ. (5.60)

Clearly, for all ξ ∈ X there exists an ξ′ ∈ X such that (ξ, ξ′) ∈ R. Furthermore, if
we take any (ξ, ξ) ∈ R. Then, given any w1 := (v1, d1) ∈ B and t1 ∈ T such that
x(w1, t) = ξ, the following holds. If t2 ∈ T is such that there exists a w′ := (v′, d′) ∈
B such that x(w′, t2) = ξ, then we can show that there exists a d2 ∈ πdB such that
if we define

v2 := v′ ∧t2
t1
v1, (5.61)

w2 := (v2, d2), (5.62)

we have that

w2 ∈ B, (5.63a)

x(w2, t2) = ξ, (5.63b)

d2(τ) = d′(τ), ∀τ ≤ t2, (5.63c)

and for all τ > t2,
(x(w1, τ − t2 + t1), x(w2, τ)) ∈ R. (5.64)

136

5.3 Bisimulation in the behavioral setting

Since x is a state map, we can construct w2 := w′ ∧t2
t1
w1 and have w2 ∈ B. Thus,

(5.63a) and (5.63c) are satisfied. To show that (5.63b) is also satisfied, we use the
fact that x is past induced. With this fact, we can infer that

x(w2, t2) = x(w′, t2) = ξ2. (5.65)

From here, (5.64) follows from the fact that x is Markovian.

In the proof of Proposition 5.26, we see that the Markovian and past induced-
ness properties are sufficient conditions for the identity relation to be a bisimula-
tion relation. Therefore, hereinafter we are going to restrict our attention to past
induced Markovian state maps. Before we proceed, it is worthwhile to notice that
the state construction of linear systems and deterministic finite state automata are
Markovian and past induced.

Summing up the discussion about ≈bis, we can present the following theorem.

Theorem 5.27. The bisimilarity relation≈bis is an equivalence relation for the class
of pairs (Σ, x), where x is past induced and Markovian.

Proof. This is a direct consequence of Propositions 5.24, 5.25, and 5.26.

5.3.2 The maximal bisimulation relation

We present a result analogous to Lemma 5.10.

Lemma 5.28. Given two systems Σi := (T,V × Di,Bi), i = 1, 2, and their respec-
tive state maps x1 and x2. Let (Σ1, x1) and (Σ2, x2) be bisimilar and let (Ri)i∈I

be a family of bisimulation relations between (Σ1, x1) and (Σ2, x2). The set I is an
index set of the family. The relation

R :=
⋃

i∈I

Ri (5.66)

is also a bisimulation relation.

Proof. Obviously we have that

∀ξ1 ∈ X1, ∃ξ2 ∈ X2 such that (ξ1, ξ2) ∈ R, (5.67)

∀ξ2 ∈ X2, ∃ξ1 ∈ X1 such that (ξ1, ξ2) ∈ R. (5.68)

Furthermore, if we take any (ξ1, ξ2) ∈ R. Then, given any w1 := (v1, d1) ∈ B1 and
t1 ∈ T such that x1(w1, t1) = ξ1, the following holds. If t2 ∈ T is such that there
exists a w′ := (v′, d′) ∈ B2 such that x2(w

′, t2) = ξ2, then we can show that there
exists a d2 ∈ πdB2 such that if we define

v2 := v′ ∧t2
t1
v1, (5.69)

w2 := (v2, d2), (5.70)

137

5 External equivalence of systems

we have that

w2 ∈ B2, (5.71)

x2(w2, t2) = ξ2, (5.72)

d2(τ) = d′(τ), ∀τ ≤ t2, (5.73)

and for all τ > t2,
(x1(w1, τ − t2 + t1), x2(w2, τ)) ∈ R. (5.74)

Since (ξ1, ξ2) ∈ R, then (ξ1, ξ2) ∈ Ri for some i ∈ I. The relation Ri is a bisim-
ulation relation, therefore the existence of such d2 is guaranteed. So far we have
proven that R is a simulation relation of (Σ1, x1) by (Σ2, x2). The converse can be
proven analogously to the proof above.

Lemma 5.28 implies the existence of a maximal bisimulation relation between two
bisimilar systems. In addition to that, we can assume that a bisimulation relation
R as in Definition 5.21 possesses a kind of homogeneity property, such that for all
ξi, ηi ∈ Xi, i = 1, 2,

{(ξ1, ξ2) ∈ R∧ (ξ1, η2) ∈ R ∧ (η1, ξ2) ∈ R} ⇒ {(η1, η2) ∈ R} . (5.75)

This is due to the fact that we can prove that the homogenized bisimulation relation
Rhom, defined as

Rhom := R ◦ (R−1 ◦ R), (5.76)

is a bisimulation relation, if R is a bisimulation relation. The overbar in (5.76)
indicates equivalence closure. The equivalence closure of a relation R is the smallest
equivalence relation containing R.

Proposition 5.29. Given two systems Σi := (T,V × Di,Bi), i = 1, 2, and their
respective state maps x1 and x2. If a relation R is a bisimulation between (Σ1, x1)
and (Σ2, x2), then the homogenized relation Rhom is a bisimulation relation as
well.

Proof. Take any (ξ1, ξ2) ∈ Rhom. Let w1 := (v1, d1) ∈ B1 and t1 ∈ T such that
x1(w1, t1) = ξ1. If t2 ∈ T is such that there exists a w′ := (v′, d′) ∈ B2 such that
x2(w

′, t2) = ξ2, then we can show that there exists a d2 ∈ πdB2 such that if we
define

v2 := v′ ∧t2
t1
v1, (5.77)

w2 := (v2, d2), (5.78)

we have that

w2 ∈ B2, (5.79)

x2(w2, t2) = ξ2, (5.80)

d2(τ) = d′(τ), ∀τ ≤ t2, (5.81)

138

5.3 Bisimulation in the behavioral setting

���������

�
�

�
	

Figure 5.2: An illustration of the equivalence classes in X1 and X2 induced by the
homogenized bisimulation relation. Classes with the same shading are
bisimilar (related through Rhom).

and for all τ > t2,

(x1(w1, τ − t2 + t1), x2(w2, τ)) ∈ Rhom. (5.82)

By construction (5.76), there exists a finite sequence ηk|1≤k≤2n, n ≥ 0, such that

η1 = ξ1 and η2n = ξ2,

(ηi, ηi+1) ∈ R, if i is odd and

(ηi+1, ηi) ∈ R, if i is even.

By following this chain of bisimilar states, we can infer the existence of such a d2.
So far we have proven that Rhom is a simulation relation of (Σ1, x1) by (Σ2, x2).
The converse can be proven analogously to the proof above.

The homogenized bisimulation relation has a special property that it generates
partitions in X1 and X2 and these partitions are related by isomorphic bisimulation
relation. This situation is depicted in Figure 5.2. The partitions in X1 are induced
by the equivalence relation R◦R−1, while the partitions in X2 are induced by the
equivalence relation R−1 ◦ R.

Remark 5.30. The fact that the maximal bisimulation exists and that bisimulation
generates a partition in the state space implies that there is a maximal lumping of
states that are related by the bisimulation. By maximal lumping we mean making
the partition as coarse as possible.

5.3.3 Bisimilarity and state reduction

As is mentioned before, one of the main purposes of constructing a bisimulation
relation between bisimilar systems is to facilitate consistent state reduction. The

139

5 External equivalence of systems

following proposition reveals the relation between bisimulation and the partial
ordering of the state maps.

Proposition 5.31. Given pairs (Σ, x1) and (Σ, x2), where Σ is a dynamical system,
and x1 and x2 are state maps of it. If x1 < x2 and they are both Markovian and
past induced, then

(Σ, x1) ≈bis (Σ, x2). (5.83)

Proof. Let X1 and X2 be the state space of x1 and x2 respectively. Since x1 < x2,
we know that there is a surjective map φ : X1 → X2 such that for any w ∈ B and
t ∈ T,

x2(w, t) = φ(x1(w, t)). (5.84)

A candidate for the bisimulation relation between (Σ, x1) and (Σ, x2) can be con-
structed as follows.

R ⊂ X1 ×X2, (5.85)

(ξ1, ξ2) ∈ R ⇔ξ2 = φ(ξ1). (5.86)

The fact that the following relations hold is obvious.

∀ξ1 ∈ X1, ∃ξ2 ∈ X2 such that (ξ1, ξ2) ∈ R, (5.87)

∀ξ2 ∈ X2, ∃ξ1 ∈ X1 such that (ξ1, ξ2) ∈ R. (5.88)

Further, if we take any (ξ1, ξ2) ∈ R. Then, given any w1 := (v1, d1) ∈ B and t1 ∈ T

such that x1(w1, t1) = ξ1, the following holds. If t2 ∈ T is such that there exists a
w′ := (v′, d′) ∈ B such that x2(w

′, t2) = ξ2, then we can show that there exists a
d2 ∈ πdB such that if we define

v2 := v′ ∧t2
t1
v1, (5.89)

w2 := (v2, d2), (5.90)

we have that

w2 ∈ B, (5.91a)

x2(w2, t2) = ξ2, (5.91b)

d2(τ) = d′(τ), ∀τ ≤ t2, (5.91c)

and for all τ > t2,

(x1(w1, τ − t2 + t1), x2(w2, τ)) ∈ R. (5.92)

Since (ξ1, ξ2) ∈ R, we know that x2(w1, t1) = ξ2. We construct w2 := w′ ∧t2
t1
w1.

Since x2 is a state map, w2 ∈ B. Thus, (5.91a) and (5.91c) are satisfied. To show
that (5.91b) is also satisfied, we use the fact that x2 is past induced. With this fact,
we can infer that

x2(w2, t2) = x2(w
′, t2) = ξ2. (5.93)

140

5.3 Bisimulation in the behavioral setting

The fact that x2 is Markovian implies that for all τ ≥ τ2,

x2(w1, τ − t2 + t1) = x2(w2, τ). (5.94)

Equation (5.92) follows from (5.94) and the definition of R. So far we have proven
that R is a simulation relation of (Σ, x1) by (Σ, x2). The converse can be proven as
follows. Take any (ξ1, ξ2) ∈ R. Then, given any w2 := (v2, d2) ∈ B and t2 ∈ T

such that x2(w2, t2) = ξ2, the following holds. If t1 ∈ T is such that there exists a
w′ := (v′, d′) ∈ B such that x1(w

′, t1) = ξ1, then we can show that there exists a
d1 ∈ πdB such that if we define

v1 := v′ ∧t1
t2
v2, (5.95)

w1 := (v1, d1), (5.96)

we have that

w1 ∈ B, (5.97a)

x1(w1, t1) = ξ1, (5.97b)

d1(τ) = d′(τ), ∀τ ≤ t1, (5.97c)

and for all τ > t2,
(x1(w1, τ − t2 + t1), x2(w2, τ)) ∈ R. (5.98)

Since (ξ1, ξ2) ∈ R, x2(w
′, t1) = ξ2. We construct w1 := w′ ∧t1

t2
w2. Because of the

state property of x2, we know that (5.97a) and (5.97c) are satisfied. Furthermore,
(5.97b) follows from the fact that x1 is past-induced. Notice that x2(w1, t1) = ξ2.
This fact, combined with the definition of R implies (5.98).

Proposition 5.31 tells us that a dynamical system equipped with a past induced
Markovian state map (Σ, x) is bisimilar to the pair (Σ, x′), where x′ is also a past
induced Markovian state map and x < x′. Therefore, as far as the equivalence
relation ≈bis is concerned, we can replace (Σ, x) with (Σ, x′). The potential benefit
of doing so is to get a smaller state space. There exists a surjective mapping going
from the state space of x to that of x′. Therefore the cardinality of the latter should
be lesser than or equal to the former.

A corollary of Proposition 5.31 is that two pairs of a dynamical system equipped
with two equivalent past induced Markovian state maps are bisimilar.

Corollary 5.32. Given pairs (Σ, x1) and (Σ, x2), where x1 ≈ x2 and they are both
Markovian and past induced. Then, (Σ, x1) ≈bis (Σ, x2).

This result confirms the similar result in finite state automata, that two automata
whose states are related by an isomorphism are bisimilar. Similar result is also
presented in [Sch03b] for linear systems.

Literature about bisimulation in discrete event systems, linear systems and hy-
brid systems also explain about how to obtain the maximal state reduction us-
ing bisimulation. The maximal reduction is obtained by computing the maximal

141

5 External equivalence of systems

bisimulation relation between the pair (Σ, x) and itself. Algorithms for comput-
ing the maximal bisimulation relation are given in, for example, [LPS98, AHLP00,
Pap03, Sch03b] for various types of systems. We shall not discuss about the algo-
rithms, rather we focus on the system theoretic aspect of the reduction.

The maximal bisimulation relation generates partitions in X , the state space of
x, as illustrated in Figure 5.2. States in each partition are lumped and considered
as a new state. The fact that the bisimulation relation is maximal implies there
cannot be any coarser partitioning. Thus, maximal state reduction is achieved.

A system theoretic related question that arises is as follows. The lumping of the
states explained in the previous paragraph gives us a dynamic map x′, such that
x′ 4 x. Can we guarantee that x′ is also a state map? The answer to this question
is no. Consider the following examples.

Example 5.33. A room has two lamps on its ceiling. Each lamp is connected to
a switch that can turn the lamp on and off. However, at every time there can be
at most one lamp turned on. The automatonA shown below models this situation.

�

� �

������ ������

������� �������

The lamps are numbered 1 and 2. This automaton is obviously deterministic. We
denote the alphabet of A as

EA = {(on, 1), (on, 2), (off, 1), (off, 2)}. (5.99)

Thus, each event is labelled with a pair. The language generated by the automaton
is a behavior of type (Z+, EA). The automaton is thus a dynamical system Σ =
(Z+, EA, L(A)). The states of the automaton can be thought of as a Markovian
past-induced state map x. We can write the alphabet as

EA = V × D, (5.100)

where

V = {on, off}, D = {1, 2}. (5.101)

Thus, we consider the number of the switch as being internal and the function of
the switch, i.e. on and off, as being external. We can define the projection that
projects the labels to V and obtain the following automaton, which we call A′.

142

5.3 Bisimulation in the behavioral setting

�

� �

��

���

��

���

The automaton A′ is nondeterministic. If we compute the maximal bisimulation
relation between (Σ, x) and itself, we get the following relation. The shading of
the states is such that bisimilar states are given the same shading.

������
������

������� �������

������ ������

������� �������

�����������

�������������	�
������
��

������

The partition induced by the bisimulation relation gives a dynamic map. Let us
denote it by x′. We can verify that this dynamic map is not a state map of Σ. If
it was a state map of Σ, the strings (on, 1)(off, 2) and (on, 2)(off, 1) would be in
L(A).

Example 5.34. Consider the following continuous time dynamical system Σ =
(R,R3,B). The behavior B is given as all left continuous solutions of the following
differential equation.

dy

dt
= u, (5.102a)

d

dt
d = 0. (5.102b)

B = {(u, y, d) | (5.102) is satisfied}. (5.103)

For this dynamical system we can define a state map x : (B×R) → R2 as follows.

x(u, y, d, t) :=

[

y(t)
d(t)

]

. (5.104)

The state space X is thus R2. This state map is obviously Markovian and past
induced. We define u and y as the external variables and d as the internal variable.
Thus, V = R2 and D = R.
The following relation R ⊂ X ×X , defined as

([

x1

x2

]

,

[

y1
y2

])

∈ R ⇔ (x1 = y1), (5.105)

143

5 External equivalence of systems

is a bisimulation relation between (Σ, x) and itself. The partition in the state space
induced by R generates a dynamical map x′ : (B × R) → R

2, where

x′(u, y, d, t) := y(t). (5.106)

Obviously, x′ is not a state map. If it was a state map, the behavior B would accept
any piecewise constant function as a trajectory of d instead of just the constant
ones.

In the examples above we see that the reduced dynamic map obtained from the
bisimulation relation is generally not a state map. However, it can be taken as a
state map, at the expense of the fidelity of the system description with respect to
the internal dynamics. That is, the reduced dynamic map can be considered as
a state map of a dynamical system Σ′, whose behavior is larger than that of Σ.
The behavior of Σ′ is larger because it also contains the trajectories resulting from
concatenation that are not in the behavior of Σ.

In Example 5.33, adopting the reduced state map as a state map, we end up with
a dynamical system Σ′, whose behavior is larger than that of Σ. To be precise, Σ′

differs from Σ in the sense that in the automaton corresponding to Σ′, we do not
care about the numbering of the lamps and the switches. Thus, in a sense, Σ′ and
Σ differ in the internal part.

In Example 5.34, if we adopt x′ as a state map, we also end up with a dynamical
system Σ′, whose behavior is larger than that of Σ. In Σ′, we allow the trajectory
of d to be piecewise constant, instead of just constant. Again, here we have that
Σ′ and Σ differ in the internal part.

5.3.4 Bisimilarity and the external behavior

We have seen that bisimilar automata generate the same language. Similarly, Van
der Schaft [Sch03b] has proven that bisimilar linear systems of the form (5.20) have
the same external behavior. We are going to derive a similar result for the general
setting we have been discussing.

Generally, given two bisimilar pairs (Σ1, x1) and (Σ2, x2) according to the defi-
nition of bisimilarity so far, it is not necessarily true that the external behaviors of
Σ1 and Σ2 are equal. Consider the following examples.

Example 5.35. Consider the two automata depicted below.

�

� �

�

� �

� �

The alphabet {a, b} is considered as the external signal space and the states of
the automata represent Markovian past-induced state maps. We can easily verify

144

5.3 Bisimulation in the behavioral setting

that R := {(ξ1, η1), (ξ2, η2)} is a bisimulation relation, and that the two automata
bisimilar. However, the external behaviors (i.e. the language generated by the
automata) are not equal. In terms of regular expressions, the language generated
by the automaton on the left and on the right are (ab)∗ and (ba)∗ respectively.

Example 5.36. Consider a dynamical system Σ1 = (T,V×D,B1), where T = V =
D = R and the behavior B1 is given as

B1 = {(v1, d1)}, (5.107)

v1(t) = t, ∀t ∈ R, (5.108)

d1(t) = 0, ∀t ∈ R. (5.109)

We can verify that x1 : B1 × R → R, where

x1(v1, d1, t) := v1(t), ∀t ∈ R (5.110)

is a state map of B1.
Now, take another dynamical system Σ2 = (T,V × D,B2), whose behavior B2 is
given as

B2 = {(v2, d2)}, (5.111)

v2(t) = t− 1, ∀t ∈ R, (5.112)

d2(t) = 0, ∀t ∈ R. (5.113)

We can verify that x2 : B2 × R → R, where

x2(v2, d2, t) := v2(t), ∀t ∈ R (5.114)

is a state map of B2.
Furthermore, we can verify that the identity relation in R × R is a bisimulation
relation between (Σ1, x1) and (Σ2, x2). Thus the two pairs are bisimilar. However,
as we have seen, the external behaviors are not equal, due to time shifting.

In the examples above, we see bisimilar systems that do not share the same ex-
ternal behavior. Rather, the trajectories of one external behaviors are time shifted
version of the other’s. The reason behind this fact is that the bisimulation that we
consider is time abstract. If we require that states reached at the same time instant
are bisimilar, we can get external behavior equivalence under some additional
technical conditions.

Definition 5.37. Given a dynamical system Σ = (T,W,B) and a state map x. De-
note the state space of x by X . We define the time-indexed state space Xt, t ∈ T

as

Xt := {ξ ∈ X | ∃w ∈ B such that x(w, t) = ξ}. (5.115)

145

5 External equivalence of systems

Thus, the time indexed state space consists of all states that are reached at a
certain time instant. With this definition we can define synchronized bisimulation as
follows.

Definition 5.38. Given bisimilar pairs (Σ1, x1) and (Σ2, x2) with a bisimulation re-
lation R ⊂ X1×X2. The relation R is a synchronized bisimulation if the following
relations hold for every t ∈ T.

∀ξ1 ∈ X1t, ∃ξ2 ∈ X2t such that (ξ1, ξ2) ∈ R, (5.116)

∀ξ2 ∈ X2t, ∃ξ1 ∈ X1t such that (ξ1, ξ2) ∈ R. (5.117)

If the pairs (Σ1, x1) and (Σ2, x2) are such that there exists a synchronized bisim-
ulation between them, then they are said to be synchronously bisimilar. Notice that
two bisimilar pairs (Σ1, x1) and (Σ2, x2) are synchronously bisimilar if and only if
the maximal bisimulation between them is a synchronized bisimulation.

Remark 5.39. The bisimulation relations given in Examples 5.35 and 5.36 are not
synchronized bisimulation.

Remark 5.40. For finite state automata, it is quite easy to see that a bisimulation
relation is a synchronized bisimulation if and only if the initial states are related
by the bisimulation. For linear systems with observable state space representation,
any bisimulation is a synchronized bisimulation. This is due to the fact that the
time-indexed state space at any time instant is the state space itself.

The following result can be proven about synchronously bisimilar systems.

Theorem 5.41. Given two dynamical systems Σ1 = (T,V × D1,B1) and Σ2 =
(T,V × D2,B2) equipped with state maps x1 and x2 respectively. If (Σ1, x1) and
(Σ2, x2) are synchronously bisimilar, then the following statements hold.
(i) For any v1 ∈ πvB1 and τ ∈ T, there exists a v2 ∈ πvB2 such that

v1(t) = v2(t), ∀t > τ. (5.118)

(ii) For any v2 ∈ πvB2 and τ ∈ T, there exists a v1 ∈ πvB1 such that (5.118) holds.

Proof. The proof is straightforward from the definition of bisimulation (Definition
5.21).

Theorem 5.41 tells us that synchronously bisimilar systems have almost equal
external behaviors. To be precise, they share the same suffix behavior (see Def-
inition 4.32). If the time axis T has a minimal element t0, then the suffix of the
external behaviors after time t0 are equal. For finite state automata, this implies
that the generated languages are equal.

If the time axis T does not have a minimal element and the external behaviors
are complete, then bisimilarity also implies that the external behaviors are equal.
This is the case, for example, for linear systems. A behavior B of type (T,W) is

146

5.3 Bisimulation in the behavioral setting

complete if for any trajectory w ∈ WT, which is not in B, there exists a finite time
interval ∆ := [τ, τ ′] ⊂ T such that

w(t)|t∈∆ /∈ B|t∈∆. (5.119)

This means, if for any finite time interval we cannot distinguish a trajectoryw from
trajectories in B, then w must be in B.

Example 5.42. Define a family of functions p(t; τ), parameterized by τ as follows.

p(·; τ) : R → R+, (5.120)

p(t; τ) :=

{

e−t, t > τ
e−τ , t ≤ τ

. (5.121)

Consider two behaviors B1 and B2 defined as

B1 := {p(t; τ) | τ ≤ 0}, (5.122)

B2 := B1 ∪ {e−t}. (5.123)

Notice that B1 is not complete. Therefore, although B1 and B2 share the same
suffix behavior, yet B1 6= B2.

In the preceding discussion we have learned that bisimilar linear systems in
state space representation, where bisimulation is in the sense of Definition 5.21 and
the state space representation is observable, have equivalent external behavior. We
also have learned that, generally, systems with equivalent external behaviors are
not bisimilar. This is a well known fact, for example, in the case of finite state
automata or hybrid systems [LPS98].

We close this section by proving that for linear systems of the form (5.20), two
systems are bisimilar if and only if their external behaviors are equal.

Consider the following equation

dx

dt
= Ax+Bu+Gd, (5.124a)

y = Cx, (5.124b)

with (A,C) observable. We can write a kernel representation corresponding to
this equation as follows.

[

d
dt
I −A −B 0 −G
C 0 −I 0

]









x
u
y
d









= 0. (5.125)

Since the states are observable, we can always transform the representation into
the following form.

[

0 P Q R
I T1 T2 T3

](

d

dt

)









x
u
y
d









= 0, (5.126)

147

5 External equivalence of systems

where
[

P Q R
]

is a full row rank matrix.
We define the following behavior

Bfull∈
−→
L

x+u+y+d
c , (5.127)

Bfull := {(x, u, y, d) | (5.126) is satisfied}. (5.128)

The behavior obtained by eliminating the state x from Bfull can be represented as
follows.

B∈
−→
L

u+y+d
c , (5.129a)

B =







(u, y, d) |
[

P Q R
]

(

d

dt

)





u
y
d



 = 0







. (5.129b)

The elimination of the state variables is an exact elimination (see Chapter 3).
The state variables x can be regarded as the canonical minimal state map of B.

x(u, y, d, t) = T1

(

d

dt

)

u+ T2

(

d

dt

)

y + T3

(

d

dt

)

d. (5.130)

We can see that the state map is both Markovian and past induced.
To prove that behaviors of the form (5.129) equipped with state map (5.130) are

bisimilar if their external behaviors are equal, we need the following lemma.

Lemma 5.43. Given two dynamical systems Σi = (R,Ru+y+di ,Bi), i = 1, 2. The
behavior Bi is defined as

Bi∈
−→
L

u+y+di

c , (5.131a)

Bi =







(u, y, d) |
[

Pi Qi Ri

]

(

d

dt

)





u
y
d



 = 0







, (5.131b)

i = 1, 2. The variables u and y are considered the external variables, and d the
internal variable. Define αi, i = 1, 2, as the Nerode state construction of B1 and
B2 respectively. Also, define πv as the projection that eliminates the variable di

from Bi, i = 1, 2. If πvB1 = πvB2, then (Σ1, α1) ≈bis (Σ2, α2).

Proof. Recall that the Nerode state construction α of a behavior B of type (W,T)
is defined as

α(w, τ) = w(t)|t≤τ . (5.132)

Thus, each state is an element of a function space. Denote the state space of α1

and α2 by X1 and X2 respectively. We need to construct a bisimulation relation R
between (Σ1, α1) and (Σ2, α2). We construct R as follows.

R ⊂ X1 ×X2, (5.133a)

(ξ1, ξ2) ∈ R :⇔ (πvξ1 = πvξ2) . (5.133b)

148

5.3 Bisimulation in the behavioral setting

The right hand side of (5.133b) is an abuse of notation. By (πvξ1 = πvξ2) we mean
that the external part of the states are equal. Since the external behaviors of the
systems are equal, we know that

∀ξ1 ∈ X1, ∃ξ2 ∈ X2 such that (ξ1, ξ2) ∈ R, (5.134)

∀ξ2 ∈ X2, ∃ξ1 ∈ X1 such that (ξ1, ξ2) ∈ R. (5.135)

Further, if we take any (ξ1, ξ2) ∈ R. Then, given any w1 := (u1, y1, d1) ∈ B1 and
t1 ∈ R such that α1(w1, t1) = ξ1, the following holds. If t2 ∈ R is such that there
exists a w′ := (u′, y′, d′) ∈ B2 such that α2(w

′, t2) = ξ2, then we can show that
there exists a d2 ∈ πdB2 such that if we define

u2 := u′ ∧t2
t1
u1, (5.136a)

y2 := y′ ∧t2
t1
y1, (5.136b)

w2 := (v2, d2), (5.136c)

we have that

w2 ∈ B2, (5.137a)

α2(w2, t2) = ξ2, (5.137b)

d2(τ) = d′(τ), ∀τ ≤ t2, (5.137c)

and for all τ > t2,
(α1(w1, τ − t2 + t1), α2(w2, τ)) ∈ R. (5.138)

First of all, we see the (5.137b) is automatically satisfied by the construction (5.136).
The fact that (ξ1, ξ2) ∈ R implies that

t1 = t2, (5.139a)

u1(t) = u′(t), ∀t ≤ t1, (5.139b)

y1(t) = y′(t), ∀t ≤ t1. (5.139c)

Therefore, we also have that

u2 = u1, (5.140)

y2 = y1. (5.141)

Hence, (5.138) is also satisfied. Let us define

D := {d | (u1, y1, d) ∈ B2}. (5.142)

Since the external behaviors of the two systems are equal, we know that D is not
empty. Furthermore, because of (5.139b) and (5.139c), we also know that there

exists a d̃2 ∈ D such that
d̃2(τ) = d′(τ), ∀τ ≤ t2. (5.143)

Therefore we can use d2 := d̃2 and satisfy (5.137a) and (5.137c). So far we have
demonstrated that the relation R is a simulation of (Σ1, α1) by (Σ2, α2). However,
showing that the converse also holds is analogous to the proof above.

149

5 External equivalence of systems

Using Lemma 5.43 we can prove the following theorem.

Theorem 5.44. Given two dynamical systems Σi = (R,Ru+y+di ,Bi), i = 1, 2. The
behavior Bi is defined as

Bi∈
−→
L

u+y+di

c , (5.144a)

Bi =







(u, y, d) |
[

Pi Qi Ri

]

(

d

dt

)





u
y
d



 = 0







, (5.144b)

i = 1, 2. The variables u and y are considered the external variables, and d the
internal variable. We equip the systems with Markovian past induced state maps
xi, where

xi(wi, t) := Ti

(

d

dt

)

wi, ∀wi ∈ Bi, t ∈ R, (5.145)

for some polynomial matrix Ti, i = 1, 2. Also, define πv as the projection that
eliminates the variable di from Bi, i = 1, 2. If πvB1 = πvB2, then (Σ1, x1) ≈bis

(Σ2, x2).

Proof. From Lemma 5.43 we know that the dynamical systems equipped with their
Nerode state construction αi are bisimilar. Further, since αi < xi, for i = 1, 2, we
can use Proposition 5.31 to infer that

(Σi, αi) ≈bis (Σi, xi), i = 1, 2. (5.146)

Finally, by using the transitivity property of ≈bis (Proposition 5.25), we conclude
that

(Σ1, x1) ≈bis (Σ2, x2). (5.147)

One consequence of Theorem 5.44 is that for linear systems of the form (5.124)
with observable state space, two systems are bisimilar if and only if their external
behaviors are equal. Here, bisimulation is in the sense of Definition 5.21. That is,
there exists a relation R between the state space of the systems that satisfies the
conditions in Definition 5.21. Since Definition 5.21 is a generalization of Definition
5.19, the relation R also satisfies the conditions in Definition 5.19, except for the
fact that we do not explicitly require that R is a linear subspace.

To extend the result to the case where the state space representation is not nec-
essarily observable, we do the following. We use a result in linear systems the-
ory that any unobservable state space representation of the form (5.124) can be
brought to the form shown in (5.148), by means of invertible transformation of the
states. See for example, Corollary 5.3.14 in [PW98].

ẋobs = Ã11x
obs + B̃1u+ G̃1d, (5.148a)

ẋnon = Ã21x
obs + Ã22x

non + B̃2u+ G̃2d, (5.148b)

y = C̃xobs, (5.148c)

150

5.3 Bisimulation in the behavioral setting

with (Ã11, C̃) an observable pair. Here we can see that the transformation split the
states into the observable and unobservable parts.

It can be verified that eliminating xnon can be done by removing (5.148b) from
(5.148). That is, (5.148a) and (5.148c) give us a representation of the behavior with
respect to u, y, d, and xobs. Notice that by doing so we obtain an observable state
space representation of the same behavior. Therefore xobs is a state map of the
behavior. We denote the observable subspace of the state space as X obs.

From Theorem 5.44 we already know that if two linear systems of the form
(5.124) have equal external behaviors, there exists a bisimulation relation between
the observable part of the state spaces X obs

1 and X obs
2 . If we denote this relation by

R, we can formulate the extension of R to cover the whole state space as follows.

Denote the extended relation by R̃, then for any ξi ∈ Xi, i = 1, 2,

(ξ1, ξ2) ∈ R̃ :⇔ (ξobs
1 , ξobs

2) ∈ R. (5.149)

The symbols ξobs
1 and ξobs

2 denote the projection of ξ1 and ξ2 to X obs
1 and X obs

2

respectively.
In [Sch03b] there is an example to demonstrate that external behavior equiva-

lence of systems of type 5.124 does not imply bisimilarity.

Example 5.45. (taken from [Sch03b]) Consider the following two systems

Σ1 :
dx1

dt
=

[

0 1
0 0

]

x1 +

[

0
1

]

d1, x1 ∈ R2, d1 ∈ R

y1 =
[

1 0
]

x1, y1 ∈ R

, (5.150)

Σ2 :
dx2

dt
= d2, x2 ∈ R, d2 ∈ R

y2 = x2, y2 ∈ R
. (5.151)

In the example, the behavior of the systems are assumed to be the strong solu-
tion to (5.124). The external variable is denoted by y and the internal variable d.
Notice that the first system is a double integrator, with d as the input and y the
output. The second system is a (single) integrator. These systems have equal ex-
ternal variables. However, the algorithm presented in [Sch03b] shows that they
are not bisimilar.

The result that we have proven here does not contradict the example. The ex-
planation is that the state construction in (5.150) and (5.151) are not state maps for
the strong behaviors.

The discrete time counterpart of Theorem 5.44 generally does not hold. This is
because the discrete time counterpart of Lemma 5.43, which is used in construct-
ing the proof of Theorem 5.44, generally does not hold. In fact, we can pinpoint
where the proof fails in the discrete time part. In the proof of Lemma 5.43 we de-

fine a set D and assert the existence of a d̃2 ∈ D such that (5.143) holds. This is
generally not true for discrete time linear systems. As a consequence, we can con-
struct an example of discrete time linear systems with equal external behaviors,
which are not bisimilar. The example is the discrete time version of Example 5.45.

151

5 External equivalence of systems

Example 5.46. Consider the following two systems

Σ1 :
x1(k + 1) =

[

0 1
0 0

]

x1(k) +

[

0
1

]

d1(k + 1), x1 ∈ R2, d1 ∈ R

y1(k + 1) =
[

1 0
]

x1(k), y1 ∈ R

, (5.152)

Σ2 :
x2(k + 1) = d2(k + 1), x2 ∈ R, d2 ∈ R

y2(k + 1) = x2(k), y2 ∈ R
. (5.153)

The external variable is denoted by y and the internal variable d. These systems
have equal external variables. However, we can prove that they are not bisimilar.
We shall do it by contradiction. Suppose that a bisimulation relation R exists be-
tween X1 and X2. Consequently the set {ξ ∈ X1 | (ξ, 0) ∈ R} is not empty. Let
(a, b) ∈ X1 be such that ((a, b), 0) ∈ R. Necessarily, a = 0. However, for any b ∈ R,
((0, b), 0) cannot be in R, since departing from (0, b) ∈ X1, the external trajectory
of the first system is necessarily 0 and then b at the first two time instances. Mean-
while, the trajectory of the second system departing from 0 ∈ X2 is free after the
first time instance. Thus the first system cannot simulate the second.

5.4 Summary

In this chapter we discuss about the notion of external equivalence of systems.
We start with the notion of external behavior equivalence. An external behavior
of a system is obtained by factoring the signal space W as V × D. The latter are
the external and internal signal spaces respectively. The behavior obtained by
projecting the behavior of the system to the space V is called the external behavior.

Another notion of external behavior equivalence is bisimulation. The concept
of bisimulation originates in the field of theoretical computer science. A bisim-
ulation is a relation with certain properties, defined between the state space of
two systems. Two systems are called bisimilar if there exists a bisimulation rela-
tion between them. We review bisimulation in the sense of finite state automata.
Bisimulation for other class of systems that has appeared in the literature is re-
viewed as well. A well known result about the relation between bisimilarity and
the external behavior equivalence, as external equivalence of systems, is that the
former is stronger than the latter.

We adopt the notion of bisimulation and define it for the class of dynamical
systems equipped with a state map. That is, given dynamical systems Σi =
(T,V × Di,Bi), i = 1, 2, and state maps x1 and x2 of the systems respectively,
we define the notion of bisimulation between (Σ1, x1) and (Σ2, x2). We prove that
for Markovian past induced state maps, bisimilarity is an equivalence relation. We
also discuss the idea of state reduction in this general setting.

In the last section, we discuss about the relation between bisimilarity and ex-
ternal behavior equivalence. It is proven that with some assumption, bisimilarity
implies external behavior equivalence. Another interesting result that is derived
is that for a class of continuous time linear systems, which has been treated in the

152

5.4 Summary

literature before [Pap03, Sch03b], bisimilarity is equivalent to external behavior
equivalence. However, for the discrete time counterpart of this class of systems,
the result does not hold.

153

5 External equivalence of systems

154

6

Conclusions and recommendations

”Whereof one cannot speak, thereof one must be silent.” - Ludwig Wittgen-
stein

6.1 Conclusions

In this book we discuss a unified systems theoretic framework for modeling and
analyzing dynamical systems. The framework is based on the behavioral ap-
proach to systems theory, pioneered by Jan Willems [Wil86a, Wil86b, Wil87]. The
paradigm of this approach is to identify systems with their behaviors. The behav-
ior of a system is the collection of trajectories that the system can exhibit / under-
take. This is discussed in Chapter 2. We also discuss a few classes of dynamical
systems, namely linear systems, discrete event systems and hybrid systems from
the behavioral point of view.

One of the main themes of the book, namely interconnection, is discussed in
Chapter 3. We explain how interconnection or synchronization of systems men-
tioned in the previous paragraph can be cast as behavior interconnection. We start
with the most basic kind of interconnection, that is, the full interconnection. The
full interconnection is formally defined as interconnection of behaviors of equal
types. Loosely speaking, in full interconnection, full information about the behav-
iors involved is shared. This is evident when full interconnection is interpreted,
for example, for linear systems and discrete event systems. In these cases, full
interconnection means that the behaviors synchronize on all variables and events
respectively.

Another kind of interconnection that we discuss is partial interconnection. In a
partial interconnection, the behaviors involved do not share full information. The
fact that some information is hidden in the interconnection is represented by a
behavioral projection. A projection is a surjective map that maps a behavior to
another one, possibly of a different type. After a projection, some information
about the behavior can be lost, since it is possible that multiple trajectories are
mapped to the same trajectory in the domain.

155

6 Conclusions and recommendations

By defining different projections, we can decide what information to hide and
what information to retain. Thus, different projections can retain different infor-
mation. Projections that retain the same information are said to be equivalent. We
also define a partial ordering for projections. Loosely speaking, a projection φ is
less than another projection γ if the information in φ can be inferred from that
retained in γ. When this is the case, we also say that φ is observable from γ.

Another important concept that we introduce is that of dynamic maps. Dynamic
maps are surjective maps that maps the Cartesian product of a behavior B and its
time axis T to a domain. Dynamic maps can be regarded as projections. We also
define a partial ordering for dynamic maps. Furthermore, we show that the class
of dynamic maps defined on a behavior has a lattice structure.

We define several subclasses of dynamic maps, based on some certain properties
they have. The most important subclass is the class of so called state maps. State
maps are dynamic maps that possess the so called state property.

In Chapter 4 we discuss control problems seen as interconnections. The basic
idea is that a control problem can be seen as follows. Given a system that we call
the plant. The problem is to find another system, called the controller, that when
interconnected with the plant yields a system with a desired property. We also
specify a projection that determines how the controller is interconnected with the
plant.

An important issue related to every control problem is that of achievability. Given
a control problem, the specification is said to be achievable if there exists a con-
troller that yields it. That is, the interconnection between the controller and the
plant achieves the specification. We presented a construction of the so called
canonical controllers. There are two kinds of canonical controllers. The first canon-
ical controller is defined as a set theoretic construction. It achieves the desired
specification if and only if it is achievable at all. The second canonical controller
is defined as an interconnection. For plant with homogeneity property, this con-
troller achieves the desired specification if and only if it is achievable at all.

In some cases, on top of achieving the desired specification, the controller also
has to satisfy some additional constraints. We discuss two kinds of constraints.
The first one is the so called compatibility constraint. The idea behind this constraint
is the interpretation that interconnection is seen as something realized on previ-
ously existing systems. With this interpretation, it is necessary that all possible
pasts of the systems involved in the interconnection can be continued. By past we
mean the portion of the trajectories prior to the realization of the interconnection.

We define two notions of compatibility, strong and weak. Further, we show
that for linear systems, the notion of compatibility and weak compatibility are re-
lated to the notion of regular interconnection and regular feedback interconnections
[PW98]. In fact, we show that achievability with a weakly compatible controller is
equivalent to achievability with a regular controller. Conditions for achievability
with a regular controller are published in [BT02].

The other constraint that we discuss is input-output partitioning constraint. This
constraint concerns linear systems. The basic idea is as follows. In some situation,
there are some variables that are used in the interconnection between the plant

156

6.2 Contributions of the thesis

and the controller, which are inherently outputs of the plant. By this we mean,
for example, variables that are related to measurement or sensor information. To
be realistic, the controller should not impose any constraint directly on these vari-
ables. This concept is elaborated mathematically in Section 4.3. We also derive an
algorithm to construct a controller that achieves the desired specification, while
respecting the compatibility constraint (in the form of regularity) and the input-
output partitioning constraint. The algorithm yields a solution, if and only if such
a controller exists at all.

Using the same mathematical results as the ones used to construct the controller
described in the previous paragraph, we also give an algebraic solution to the
so called control problem with minimal interaction for linear systems. The problem
is about finding a controller that achieves the desired specification using as few
control variables as possible.

Chapter 5 is devoted to the issue of external equivalence of systems. We intro-
duce the notion of external behavior equivalence. First, we factor the signal space of
the behavior into an internal and external part. The external behavior of a system
is simply its behavior projected to the external part of the signal space.

We also discuss the concept of bisimulation as a notion of external equivalence.
Bisimulation is a concept that originates from the field of discrete event systems
and concurrent processes. We also review the concept of bisimulation particularly
for discrete event systems and continuous time linear systems.

It is generally known that bisimilarity is a stronger notion of systems equiva-
lence, than external behavior equivalence. However, in this thesis it is proven that
for continuous time linear systems, the two notions coincide. This result strength-
ens a result by Van der Schaft [Sch03b, Sch04a], that for that class of systems,
bisimilarity is equivalent to mutual simulation. Mutual simulation is another no-
tion of equivalence, whose strength is between bisimulation and external behavior
equivalence.

6.2 Contributions of the thesis

The contributions of the thesis can be summarized as follows.

• In this thesis we formulate a unified systems theoretic framework for mod-
eling and analyzing dynamical systems. The framework is based on the be-
havioral approach to systems theory and is generalized to include systems
such as linear systems, discrete event systems and hybrid systems.

• In the framework, interconnection of systems is handled as interconnection
of behaviors. We also introduce the concept of behavioral projection to en-
able handling partial interconnections in a general setting. Furthermore, a
partial ordering of projections is defined, and its relation to the concept of
observability is presented.

157

6 Conclusions and recommendations

• Another tool of systems analysis developed in this book is dynamic maps.
We introduce the concept of dynamic maps as well as some subclasses of
dynamic maps. One of the subclasses is the class of state maps, which is a
general concept that captures the notion of state in the usual sense.

• We also introduce a partial ordering and lattice structure for dynamic maps
and show how the properties of the subclasses of dynamic maps, which are
discussed in the previous point, are related to this lattice.

• The concept of canonical controllers is analyzed in a general set-theoretic
manner. It is then related with the issue of achievability of a specification in
control problems.

• We present the notion of compatibility constraint and show how it is related
to the already known concepts of regular and regular feedback interconnec-
tions.

• We also present the notion of input-output partitioning constraint for control
problem of linear systems. An algorithm to synthesize a regular controller
satisfying the constraint is given.

• Using the same mathematical tool as in the previous point, we treat the prob-
lem of control with minimal interaction for linear systems. The problem is
about finding a controller that achieves the desired specification using as
few control variables as possible. An algorithm is presented, with which the
problem is transformed into a simple algebraic-combinatoric problem. We
also derive a tight lower bound on the number of control variables.

• External equivalence of systems is considered, in the form of external be-
havior equivalence and bisimulation. After reviewing bisimulation in the
sense of discrete event systems and linear systems, we present bisimulation
in a general behavioral setting. Analysis is performed by exploiting the lat-
tice structure of the dynamic maps. One important result that we obtain is
that for continuous time linear systems, bisimilarity is equivalent to external
behavior equivalence.

6.3 Recommendations for further research

There are several issues that can be recommended for further research. We shall
review them one by one.

6.3.1 More common structure for general behaviors

Although we have seen the application of the theory developed in this thesis for
several classes of dynamical systems, i.e., linear systems, discrete event systems

158

6.3 Recommendations for further research

and hybrid systems, it is apparent that these systems are structured to different
extents. By this, we mean the following.

Linear systems are equipped with a realization theory that tells us whether a set
of trajectories can be represented as a behavior in one of the classes that we dis-
cuss in Section 2.3 [Wil86b, PM99]. Analysis in the general framework is typically
done in a set-theoretic fashion. It is therefore an important issue to know when a
behavior that is defined as a set-theoretic construct actually falls into the class of
interest. The discussion about proper eliminability of variables in Chapter 3 is an
example of a discussion on this issue.

Behaviors of linear systems also admit a nice algebraic framework, namely that
of polynomial matrices. In this framework analysis and synthesis of systems can
be performed. This fact is exemplified in Chapter 4, where we present some algo-
rithms for controller synthesis. Furthermore, the algebraic structure of the linear
systems admits some canonical forms, for example, the minimal representation
and the Smith form. The availability of such canonical forms enables us to trans-
late systems theoretic properties into properties of the representation. For exam-
ple, controllability and observability of linear systems can be tested by bringing
the system to its Smith form [PW98].

Remark 6.1. Some algebraic-geometric structure for nonlinear dynamical systems,
similar to that of linear systems also exists, for example in [Nv90, Sas99, Pom01a,
Pom01b]. This has been exploited, for example, in the research about bisimulation
of nonlinear dynamical systems [Sch03b], and other related research [PS02, TP03].

Discrete event systems, particularly finite state automata, also have a realiza-
tion theory. It is manifested in the fact that regular languages are representable
by finite state automata. There is also an algebraic framework for discrete event
systems, namely process algebra [BPS01]. However, finite state automata do not yet
possess an algebraic structure as extensive as that of linear systems. For example,
there is not (yet) any translation of the systems theoretic properties, such as con-
trollability and observability, in the sense discussed in this book, to the properties
of the representation of the automata.

Hybrid systems are even less structured. For this large class, there is not yet any
realization theory that relates the collection of trajectories to the representation
as a hybrid behavioral automaton. There is, however, ongoing research to this
direction, for example, [Pet04]. As to the algebraic structure for hybrid systems,
there have been efforts to extend process algebra, which is a tool originating in
the field of computer science, to cover hybrid systems [Cui04, BKU04, BKU05].
This approach offers an axiomatic system, in which notions such as equivalence
of processes can be formally defined.

Based on the exposition above, it would be favorable to conduct research in the
direction of establishing a realization theory for hybrid systems and a general alge-
braic framework that can be used to analyze all three classes of systems mentioned
above. As a starting point for the realization theory, one might want to take a look
at the literature, where a general and abstract realization theory is presented, for
example [Wil79, Sch84, Son98]. For the algebraic framework, it is desired to have

159

6 Conclusions and recommendations

a structure that allows transformation of a given representation to equivalent rep-
resentations (like unimodular matrices do), and admits some canonical forms, on
which systems theoretical properties can be easily checked. To this end, hybrid
process algebra can be used as a starting point.

6.3.2 Compatibility and nonblocking interconnection

The constrained control problems discussed in Chapter 4 are mainly about linear
systems. Consider the compatibility constraint. The idea behind compatibility
constraint is to avoid deadlock because of the interconnection. Deadlocks in the
models of continuous time physical systems are typically undesirable. However,
deadlocks for discrete event systems, in the sense that an execution does not con-
tinue indefinitely could be desirable. What is usually undesirable is if the execu-
tion deadlocks in a non-marked state. This is typically called blocking [CL99]. An
interconnection of automata that does not have blocking phenomenon is called a
nonblocking interconnection. Nonblockingness typically appears as a constraint in
the supervisory control of discrete event systems.

We see that compatible interconnection is related to nonblocking interconnec-
tion. Nevertheless, they are different notions. It would be interesting to study
the nonblocking issue in a general framework. A result in this direction might be
useful, for example, in dealing with control problems involving hybrid systems.
Perhaps, we can use the framework developed in Chapter 5, where we deal with
systems equipped with state maps. This framework is already close to the transi-
tion systems/automata framework of the discrete event systems.

6.3.3 Input-output partitioning constraint and input enabledness

In Section 4.3 we touched upon some loose connection between the fact that a vari-
able is an input to a linear system and the fact that an event is input enabled in a
discrete event system. An event inp is input enabled means that from any state
of the automaton there is always a transition labelled with inp. It would be inter-
esting to study the following questions. Is it possible to treat input enabledness in
the framework that we have developed in this book? If yes, what would be the
analog of it for other classes of systems?

6.3.4 Regular feedback achievability of linear systems

In Chapter 4, we show that for linear systems, compatibility is equivalent to the
fact that an interconnection is a linear feedback interconnection. We also prove
that weakly compatible achievability is equivalent to regular achievability, whose
necessary and sufficient conditions are known [BT02, Bel03]. However, neces-
sary and sufficient conditions for a specification in a given control problem to be
achievable with a regular feedback controller is still an open problem.

160

6.3 Recommendations for further research

6.3.5 Further studies on bisimulation

The study of bisimulation in a general behavioral setting is done in Chapter 5. It
would be interesting to conduct further studies in this direction. In doing so, we
might be able to answer some interesting questions, for example:

• We know that for continuous time linear systems, bisimilarity is equivalent
to external behavior equivalence (see Subsection 5.3.4). Is it possible to gen-
eralize this result?

• We also know that for discrete time linear systems, bisimilarity is not equiv-
alent to external behavior equivalence (see Subsection 5.3.4, particularly Ex-
ample 5.46). What extra conditions can we impose so that this fact is also
true for discrete time linear systems?

• Can we treat weak bisimulation [Mil89, Her02] in a behavioral setting and
how?

• How do we formulate and solve control problems where systems equiva-
lence is understood as bisimulation?

161

6 Conclusions and recommendations

162

Bibliography

[ABGS91] C. Alvarez, J. L. Balcazar, J. Gabarro, and M. Santha. Parallel com-
plexity in the design and analysis of concurrent systems. In PARLE91,
Lecture Notes in Computer Science. Springer-Verlag, 1991.

[ACHH93] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho. Hybrid au-
tomata: an algorithmic approach to the specification and verification of hybrid
systems, volume 736 of Lecture Notes in Computer Science, pages 209–229.
Springer, 1993.

[AHLP00] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete
abstractions of hybrid systems. Proceedings of the IEEE, 88:971–984, 2000.

[Alu95] R. Alur et. al. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3–34, 1995.

[Arn94] A. Arnold. Finite transition systems. Prentice Hall International series in
computer science. Prentice Hall Int’l, Paris, 1994.

[BBK87] J. C. M Baeten, J. A. Bergstra, and J. W. Klop. Ready trace semantics
for concrete process algebra with priority operator. Computer Journal,
30(6):498–506, 1987.

[BBM98] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for
hybrid control: model and optimal control theory. IEEE Trans. Automatic
Control, 43:31–45, 1998.

[Bel03] M. N. Belur. Control in a behavioral context. PhD thesis, University of
Groningen, June 2003.

[BKO88] J. A. Bergstra, J. W. Klop, and E. R. Olderog. Readies and failures in
the algebra of communicatinf processes. SIAM Journal on Computation,
17:1134–1177, 1988.

[BKU04] E. Brinksma, T. Krilavicius, and Y. S. Usenko. Behavioural hybrid pro-
cess calculus. Technical report, submitted for publication., 2004.

[BKU05] E. Brinksma, T. Krilavicius, and Y. S. Usenko. Process algebraic approach
to hybrid systems. submitted to the 16th IFAC World Congress, 2005.

163

Bibliography

[BPS01] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of process
algebra. Elsevier Science, 2001.

[Bro91] W. L. Brogan. Modern control theory. Prentice Hall International, New
Jersey, 1991.

[BT02] M. N. Belur and H. L. Trentelman. Stabilization, pole placement and reg-
ular implementability. IEEE Trans. Automatic Control, 47:735–744, 2002.

[Büc89] J. R. Büchi. Finite automata, their algebras and grammars. Springer-Verlag,
1989.

[CL99] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Kluwer, 1999.

[CR03] P. J. L. Cuijpers and M. A. Reniers. Hybrid process algebra. Technical
report, Technical University Eindhoven, The Netherlands, 2003.

[Cui04] P. J. L. Cuijpers. Hybrid process algebra. PhD thesis, Technical University
Eindhoven, December 2004.

[DN00] J. M. Davoren and A. Nerode. Logics for hybrid systems. Proc. of the
IEEE, 88:985 – 1010, July 2000.

[Hen96] T. A. Henzinger. The theory of hybrid automata. In Proc. 11th Annual
Symposium on Logic in Computer Science, pages 278–292. IEEE Computer
Society Press, 1996.

[Her02] Holger Hermanns. Interactive Markov Chains, volume 2428 of LNCS.
Springer-Verlag, Berlin, 2002.

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata
theory, languages, and computation. Addison Wesley, 2nd edition, 2001.

[Hoa84] C. A. R. Hoare. Communicating sequential processes. Prentice Hall Inter-
national, 1984.

[HS96] H Huttel and Sandeep Shukla. The complexity of deciding be-
havioural equivalences and preorders. Survey paper. Available on
http://www.cs.aau.dk/∼hans/Publications/pubs.html, 1996.

[HTP02] E. Haghverdi, P. Tabuada, and G. J. Pappas. Unifying bisimulation rela-
tions for discrete and continuous systems. In Proc. Mathematical Theory
of Networks and Systems, 2002.

[HTP03] E. Haghverdi, P. Tabuada, and G. J. Pappas. Bisimulation relations for
dynamical, control, and hybrid systems. submitted to Theoretical Com-
puter Science, 2003.

164

Bibliography

[JPS05] A. A. Julius, J. W. Polderman, and A. J. van der Schaft. Controller with
minimal interaction. Submitted to the 16th IFAC World Congress, 2005.

[JSS03] A. A. Julius, S. N. Strubbe, and A. J. van der Schaft. Control of hybrid
behavioral automata by interconnection. In Proc. IFAC Conf. Analysis and
Design of Hybrid Systems, pages 135–140, St. Malo, 2003. IFAC.

[JS03] A. A. Julius and A. J. van der Schaft. Compatibility of behavior intercon-
nections. In Proc. European Control Conference, Cambridge, September
2003. IEE.

[JS04a] A. A. Julius and A. J. van der Schaft. A behavioral framework for compo-
sitionality: linear systems, discrete event systems and hybrid systems.
In Proc. of Mathematical Theory of Networks and Systems, Leuven, July 2004.

[JS04b] A. A. Julius and A. J. van der Schaft. State maps of general behaviors,
their lattice structure and bisimulation. In Proc. Mathematical Theory of
Networks and Systems, Leuven, July 2004.

[JWBT04] A. A. Julius, J. C. Willems, M. N. Belur, and H. L. Trentelman. The
canonical controllers and regular interconnection. admitted for publica-
tion in Systems and Control Letters, 2004.

[KS90] P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes
and three problems of equivalence. Information and Computation, 86:43–
68, 1990.

[Lan92] R. Langerak. Transformation and semantics of LOTOS. PhD thesis, Univer-
sity of Twente, The Netherlands, November 1992.

[LPS98] G. Lafferriere, G. J. Pappas, and S. Sastry. Hybrid systems with finite
bisimulations. In Hybrid Systems V, Lecture Notes in Computer Science.
Springer, 1998.

[LSV01] N. A. Lynch, R. Segala, and F. W. Vaandrager. Hybrid I/O automata re-
visited. In Proceedings 4th Int’l Workshop on Hybrid Systems : Computation
and Control, pages 403–417. Springer-Verlag, 2001.

[LSV03] N. A. Lynch, R. Segala, and F. W. Vandraager. Hybrid I/O automata.
Information and Computation, 185:105–157, 2003.

[LT89] N. A. Lynch and M. R. Tuttle. An introduction to input/output au-
tomata. CWI Quarterly, 2:219–246, 1989.

[Mil89] R. Milner. Communication and concurrency. Prentice Hall International,
1989.

[MR99] T. Moor and J. Raisch. Supervisory control of hybrid systems within a
behavioral framework. Systems and Control Letters, 38:157–166, 1999.

165

Bibliography

[Nv90] H. Nijmeijer and A. J. van der Schaft. Nonlinear dynamical control systems.
Springer Verlag, New York, 1990.

[Oga90] K. Ogata. Modern control engineering. Prentice Hall International, New
Jersey, 1990.

[Pap03] G. J. Pappas. Bisimilar linear systems. Automatica, 39:2035–2047, Decem-
ber 2003.

[Par81] D. Park. Concurrency and automata on infinite sequences. In 5th GI
Conference on Theoretical Computer Science, pages 167–183, Berlin, 1981.
Springer-Verlag.

[Pet04] M. Petreczky. Realization theory for linear switched systems. In Pro-
ceedings of the Mathematical Theory of Networks and Systems, Leuven, July
2004.

[PM99] J. W. Polderman and I. Mareels. A behavioral approach to adaptive con-
trol. In J. W. Polderman and H. L. Trentelman, editors, Mathematics of
System and Control, Festschrift on the occasion of the 60-th birthday of
J.C. Willems, Groningen, 1999. 119-130.

[Pol97] J. W. Polderman. Proper elimination of latent variables. Systems and
Control Letters, 32:261–269, 1997.

[Pom01a] J. F. Pommaret. Partial differential control theory, volume 1:Mathematical
tools. Kluwer, Dordrecht, 2001.

[Pom01b] J. F. Pommaret. Partial differential control theory, volume 2:Control sys-
tems. Kluwer, Dordrecht, 2001.

[PP04] I. Pendharkar and H. K. Pillai. On a behavioral theory for nonlinear
systems. In Proceedings of the Mathematical Theory of Networks and Systems,
Leuven, July 2004.

[PS02] G. J. Pappas and S. Simic. Consistent abstractions of affine control sys-
tems. IEEE Transactions on Automatic Control, 47:745–756, May 2002.

[PvD04] G. Pola, A. J. van der Schaft, and M. D. Di Benedetto. Bisimulation the-
ory for switching linear systems. To appear in the Proc. 43rd IEEE Con-
ference on Decision and Control, 2004.

[PW98] J. W. Polderman and J. C. Willems. Introduction to Mathematical Systems
Theory: A Behavioral Approach. Springer, New York, 1998.

[Ram87] P. J. Ramadge. Supervisory control of discrete event systems: a sur-
vey and some new results. In Discrete event systems: models and applica-
tions, Lecture Notes in Control and Information Sciences, pages 69–80.
Springer-Verlag, 1987.

166

Bibliography

[Roc02] P. Rocha. Regular implementability of nD behaviors. In Proceedings of
Mathematical Theory of Networks and Systems, Univ. Notre Dame, 2002.

[RW89] P. J. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77:81–98, January 1989.

[RW97] P. Rapisarda and J. C. Willems. State maps for linear systems. SIAM
Journal of Contr. Optimization, 35:1053–1091, 1997.

[RW01] P. Rocha and J. Wood. Trajectory control and interconnection of 1D and
nD systems. SIAM J. Control Optim., 40:107–134, 2001.

[Sas99] S. Sastry. Nonlinear systems: analysis, stability, and control. Springer Ver-
lag, New York, 1999.

[Sme87] R Smedinga. Using trace theory to model discrete events. In Discrete
event systems: models and applications, Lecture Notes in Control and In-
formation Sciences, pages 81–99. Springer-Verlag, 1987.

[Sme89] R. Smedinga. Control of Discrete Events. PhD thesis, Rijksuniversiteit
Groningen, 1989.

[Son98] E. D. Sontag. Mathematical control theory: deterministic finite dimensional
systems. Texts in Applied Mathematics. Springer-Verlag, 1998.

[Tab04] P. Tabuada. Nonlinear flat systems admit finite bisimulations. In Proc. of
Mathematical Theory of Networks and Systems, Leuven, July 2004.

[TP03] P. Tabuada and G. J. Pappas. Abstraction of hamiltonian control systems.
Automatica, 39:2025–2033, December 2003.

[Tre99] H. L. Trentelman. A truly behavioral approch to the H∞ control prob-
lem. In J. W. Polderman and H. L. Trentelman, editors, Mathematics of
System and Control, Festschrift on the occasion of the 60-th birthday of J.
C. Willems, pages 177–190, Groningen, 1999.

[Tre04] H. L. Trentelman. Unsolved Problems in Mathematical Systems and Control
Theory, chapter Regular feedback implementability for linear differential
behaviors, pages 44–48. Princeton University Press, 2004.

[TW99] H. L. Trentelman and J. C. Willems. H-infinity control in a behavioral
context: The full information case. IEEE Trans. Automatic Control, 44:521–
536, 1999.

[Sch84] A. J. van der Schaft. System Theoretic Description of Physical Systems. CWI
Tract No.3. CWI, Amsterdam, 1984.

[Sch03a] A. J. van der Schaft. Achievable behavior of general systems. Systems
and Control Letters, 49:141–149, 2003.

167

Bibliography

[Sch03b] A. J. van der Schaft. Equivalence of dynamical systems by bisimulation.
submitted to IEEE Trans. Automatic Control, 2003.

[Sch04a] A. J. van der Schaft. Bisimulation of dynamical systems. In Proceedings
7th Int’l Workshop on Hybrid Systems : Computation and Control, Philade-
phia, 2004. Springer-Verlag.

[Sch04b] A. J. van der Schaft. Equivalence of hybrid dynamical systems. In Pro-
ceedings of the Mathematical Theory of Networks and Systems, Leuven, July
2004.

[SJ02] A. J. van der Schaft and A. A. Julius. Achievable behavior by composi-
tion. In Proceedings 41st IEEE Conf. Decision and Control, pages 7–12, Las
Vegas, 2002. IEEE.

[SS00] A. J. van der Schaft and J. M. Schumacher. An Introduction to Hybrid
Dynamical Systems. Springer, London, 2000.

[WBJT] J. C. Willems, M. N. Belur, A. A. Julius, and H. L. Trentelman. The canon-
ical controller and its regularity. To appear in the Proc. IEEE Conf. Deci-
sion and Control 2003.

[WBJT03] J. C. Willems, M. N. Belur, A. A. Julius, and H. L. Trentelman. The
canonical controller and its regularity. In Proc. IEEE Conference on Deci-
sion and Control, pages 1639–1644, Hawaii, December 2003.

[Wil79] J. C. Willems. System theoretic models for the analysis of physical sys-
tems. Richerche di Informatica, 10:71–106, 1979.

[Wil86a] J. C. Willems. From time series to linear systems - Part I. Finite dimen-
sional linear time invariant systems. Automatica, 22:561–580, 1986.

[Wil86b] J. C. Willems. From time series to linear systems - Part II. Exact model-
ing. Automatica, 22:675–694, 1986.

[Wil87] J. C. Willems. From time series to linear systems - Part III. Approximate
modeling. Automatica, 23:87–115, 1987.

[Wil91] J. C. Willems. Paradigms and puzzles in the theory of dynamical sys-
tems. IEEE Trans. Automatic Control, 36:259–294, 1991.

[Wil97] J. C. Willems. On interconnections, control and feedback. IEEE Trans.
Automatic Control, 42:326–339, 1997.

[ZB99] A. Zavala-Rio and B. Brogliato. On the control of a one degree-of-
freedom juggling robot. Dynamics and control, 9:67–91, January 1999.

168

Acknowledgements

I have been working on this thesis for about half a year now. It has not been com-
pletely easy and smooth. I am much indebted to my research supervisor, Arjan
van der Schaft, as well as Jan Willem Polderman and Jan Willems, for reading
carefully through the draft version of this thesis and giving me valuable com-
ments. I particularly feel so, because I have been reading through the draft myself
and I learned that it was anything but fun.

I also would like to thank the other members of my graduation committee, Hans
Schumacher, Ed Brinksma, George Pappas, and Rom Langerak for agreeing to
serve in the committee and reading the final draft of the thesis.

The research reported in this thesis was conducted under the auspices of the
NWO through grant number 617.023.002. I would like to thank the NWO for
funding me for the last four years.

Graduation and financial matters aside, I would also like to share a few words
about how being a PhD student was for me. In the last four years I have been
enjoying a very pleasant research atmosphere. My research supervisor, Arjan van
der Schaft, is very supportive and gives his students a lot of freedom in doing their
research. Most, if not all, of the work I have done was inspired by what he had
been researching. Arjan, I was glad when you offered me this PhD position, and
I’m still glad that I accepted the offer. I am also indebted to the other staff mem-
bers of the group for sharing a friendly and collegial (and humorous) research
atmosphere with me. In particular, I would like to thank Jan Willem Polderman,
Gjerrit Meinsma, Hans Zwart and Michel Vellekoop for helping me when I had
technical or TeX-nical problems. Heren, bedankt! I also want to thank the group
secretary, Marja Langkamp, for taking care of the administrative matters and for
the occasional discussions on nontechnical matters.

To Jan Willems, I would like to express my gratitude for the opportunity I had
to work with him, for his interest in my work and also for the time we spent
on long distance scientific discussions. Jan, it was such a privilege to work with
you. I also thank Madhu Belur for being my comrade-in-arms in my research on
behavioral systems theory. I hope our cooperation is as much useful to you as it is
to me.

169

If I had to tell a reason why life as a PhD student (or AiO as we say it in Dutch)
is fun, I would have to point to the other PhD students in the group. With my
officemate, Stefan Strubbe, I have enjoyed a lot of discussion on technical and
nontechnical matters, as well as a companionship. Stefan, jij bent hartelijk bedankt!
Other students, ex-students, visitors, and ex-visitors, Agoes, Vishy, Ram, Javi, Ari,
Emad, Hendra, Maria, Simon, and others are also ’guilty’ for the fun and comical
research atmosphere that I have enjoyed. (I wonder if this italized phrase is ever
used before).

I am a member of a rather closed and secretive group called the miniCASH.
Before you think that it is a malicious conspiracy to ruin the financial world with
small coins (if it is possible at all), let me tell you that it is actually an informal
group of ’young’ researchers in hybrid systems, with whom I have shared many
amiable lunches and scientific discussions. Rom, Tomas, Stefan, and Raj, thank
you for everything. I enjoyed our shared time and I hope we can keep in touch.

Being an Indonesian living in a foreign country, I appreciate very much the
friendship I share with the guys and girls of Indonesian students organization
and other Indonesian people in Enschede. They have been my sports mates, chat
mates, and keeping me well fed. Terima kasih banyak buat semuanya.

In a more personal tone, I would like to thank my Deppenbroek neighborhood
gang, Agoes, Dadan, and Emad. Thank you guys for being there when I need it
and for sharing the good dinners with me. I also would like to thank my friend
Ilan, for the friendship we have and the good times we had.

To other friends I have made and met here in Enschede, I wish to express my
thank and my apology for not being able to mention them personally here.

Last, but certainly not least, I thank my parents and my brothers for supporting
me from the distance. I dedicate this thesis to them.

170

Index

achievability, 72
active transition, 20
alphabet, 14
automata, 14

deterministic, 16
finite state, see automata
nondeterministic, 16

auxiliary variable, 40
axiom of state, 60

behavior, 1, 5
closed, 11
dense, 11
type, 5, 27, 36

bisimilar, see bisimulation
synchronously, 144

bisimilarity, 125
bisimulation, 124

maximal, 126, 136
synchronized, 144

blocking, 158
buffer, 30

canonical controller, 72
first, 73
second, 74

compatibility, 81
uniform, 84
uniform weak, 87
weak, 86, 87

concatenation, 7, 15
control variables, 97
controllability, 86, 90
controller, 71, 97, 120
convergence, 11

directability, 82
weak, 85

disturbance, 129
Dual Nerode state construction, 60
dynamic map, 55

future induced, 59
Markovian, 59
maximal, 57
minimal, 57
past-induced, 59
time-indexed, 55

dynamic predicate, 21, 34

equivalence closure, 136
event, 15
event multiplicity, 22
event times, 22
exact elimination, 43
execution, 16
external behavior, 121
external projection, 121

FSA, see finite state automata
full interconnection, 27
full row rank, 13

greatest lower bound, 57
guard, 20

homogeneity, 73
hybrid automata, 20
hybrid behavioral automata, 20, 31
hybrid execution, 22
hybrid trajectory, 24

implementability, 72

171

Index

input-output partition, 92
proper, 90

internal behavior, 122
internal projection, 121
invariant, 20
irrelevant variables, 115

join, 57
juggling robot, 52

Kleene closure, 15, 18

language, 14
accepted, 16
generated, 16, 29
marked, 16, 29
regular, 18

latent variable, 40
lattice, 57
least upper bound, 57
left continuous, 12
lexicographic ordering, 8, 22
linear difference map, 69
linear differential map, 69
locally integrable, 10
location, 20
lower triangular, 14

Markov property, 59
McMillan degree, 67, 69
meet, 57
mergeable behaviors, 86

natural projection, 45
Nerode state construction, 60

observability, 37, 74

partial interconnection, 39
partial ordering, 56
passive transition, 20
past-induced, 21
plant, 71, 97, 120
point, 55
point similarity operator, 56
polynomial matrices, 9

prefix closure, 15, 18, 46
projection, 36
properly eliminable, 42

regular expression, 18
regular feedback interconnection, 89
regular interconnection, 92
regularly achievable, 101
regularly implementable, see regularly

achievable
representation

kernel, 9
minimal kernel, 13, 28

reset map, 20
run, 16

signal space, 5
external, 121
internal, 121

simulation, 127
mutual, 127

solution concept, 10
specification, 71, 97, 120
state, 15

initial, 15
marked, 15, 16

state map, 60
canonincal minimal, 61

state property, 60
state space, 60

time-indexed, 143
states, 54
string, 14

empty, 14
prefix, 15
substring, 15
suffix, 15

strong solution, 10, 42
suffix behavior, 84
synchronization, 29, 31
system, 5

discrete event, 14, 29
dynamical, 5
hybrid, 20, 31
linear time invariant, 9, 28

172

Index

LTI, see linear time invariant
type, 5, 9

test function, 10
time axis, 5

hybrid, 22, 50
span, 22

time shift
unit, 9

to-be-controlled variables, 97
totally ordered group, 7
trajectory, 1, 5
transfer matrix, 90
transition relation, 15
transitive closure, 58

unimodular matrix, 13
upper triangular, 14

weak bisimulation, 159
weak solution, 10, 42

173

